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Background: Recent advancements in Machine Learning (ML) have significantly improved the 

accuracy of models predicting HIV incidence. These models typically utilize electronic medical 

records and patient registries. This study aims to broaden the application of these tools by utilizing 

de-identified public health datasets for notifiable sexually transmitted infections (STIs) from a 

southern U.S. County known for high HIV incidence rates. The goal is to assess the feasibility and 

accuracy of ML in predicting HIV incidence, which could potentially inform and enhance public 

health interventions. 

Methods: We analyzed two de-identified public health datasets, spanning January 2010 to 

December 2021, focusing on notifiable STIs. Our process involved data processing and feature 

extraction, including sociodemographic factors, STI cases, and social vulnerability index (SVI) 
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metrics. Various ML algorithms were trained and evaluated for predicting HIV incidence, using 

metrics such as accuracy, precision, recall, and F1 score. 

Results: The study included 85,224 individuals, with 2,027 (2.37%) newly diagnosed with HIV 

during the study period. The ML models demonstrated high performance in predicting HIV 

incidence among males and females. Influential predictive features for males included  age at STI 

diagnosis, previous STI information, provider type, and SVI. For females, they included age, 

ethnicity, previous STIs information, overall SVI, and race. 

Conclusions: The high accuracy of our ML models in predicting HIV incidence highlights the 

potential of using public health datasets for public health interventions such as tailored HIV testing 

and prevention. While these findings are promising, further research is needed to translate these 

models into practical public health applications. 

Keywords: #machine learning #HIV #public health #EHE #artificial intelligence 

INTRODUCTION 

Despite significant advancements in the treatment and prevention of HIV, disparities remain in the 

implementation of these interventions, particularly in the Southern U.S. [1-3]. Fulton County, GA, 

is a priority jurisdiction in the Ending the HIV Epidemic (EHE) initiative due to its high HIV 

incidence [4]. In 2021, there were 59.6 new HIV diagnoses per 100,000 people in Fulton County, 

well above the national average of 11.5 [4,5]. There is a need for innovative, data-driven strategies 

to guide public health interventions aimed at reducing HIV rates by improving access to HIV 

testing and prevention. 

In recent years, Artificial Intelligence (AI), particularly Machine Learning (ML) models, have 

been used to analyze large-scale datasets, such as electronic medical records and a variety of 

patient registries [6-12]. These models have been used to identify patterns and influential features 

associated with HIV acquisition. These tools assist and inform providers of individuals who should 

be prioritized for HIV testing and prevention strategies [13].  

Medical records from a single healthcare setting provide an important context and inform 

influential features related to HIV acquisition but could fail to fully capture relevant 

socioeconomic features and other valuable geospatial data occurring outside of its patient 

population. We aim to leverage ML tools using de-identified STI/HIV public health datasets, 

readily available to public health officials, coupled with social vulnerability indicators from a high-

incidence county in the Southern U.S. using them to predict HIV incidence. This tool could inform 

tailored sexual health outreach and optimize resource allocation for HIV testing and prevention. 
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METHODS 

Study setting  

Fulton County, GA, had an estimated 2021 population of 1,066,702 residents, consisting of 45% 

African American, 44.2% White, and 7.4% Hispanic/Latino individuals. For context, 

approximately 55.9% of residents held a bachelor's degree or higher. The median household 

income was $77,635, and the poverty rate stood at 13.7% [14].  

Data sources  

From January 2010 to December 2021, we collected de-identified data of individuals 13 years of 

age and older from two Georgia databases 1) State Electronic Notifiable Disease Surveillance 

System (SendSS), a web-based platform that collects, manages, and analyzes data on 

communicable diseases such as STIs, Hepatitis C, Tuberculosis, etc. and 2) the Georgia Electronic 

HIV/AIDS Reporting System (eHARS) a browser-based system developed by the Centers for 

Disease Control and Prevention (CDC) in the U.S. to collect, manage, and analyze laboratory 

reported data specifically related to HIV. These databases collect data on demographics, diagnosis 

time frame, diagnosing provider type, risk behaviors, etc. We matched each individual by census 

tract to a Social Vulnerability Index (SVI) [15], a tool developed by the Agency for Toxic 

Substances and Disease Registry often applied in studies to assess and measure community 

vulnerability during epidemics, disasters, and emergencies in different populations. For our model 

SVI was classified using quintiles, as per tool developers, for an overall score and the four SVI 

themes (socioeconomic status, household composition, race/ethnicity/language, and 

housing/transportation). Quintiles ranged from 1 = ‘very low vulnerability’, 2 = ‘low vulnerability’, 

3 = ‘moderate vulnerability’, 4 = ‘high ‘vulnerability’ and 5 = ‘very high vulnerability’. 

Dataset development  

The outcome of interest was incident HIV during the study period of 2010 to 2021, defined as 

confirmed HIV diagnosis in eHARs. We extracted STI cases from the SendSS database, which 

specifically catalogs STIs cases per occurrence. Each case has both an outcome and a unique 

patient identifier. To ensure the accuracy of HIV diagnoses within our dataset, we applied a 

probabilistic matching technique to accurately cross-reference HIV diagnoses across the eHARS 

and SendSS databases, using key demographic characteristics. Our algorithm assigned scores to 

potential matches based on the similarity of these fields, with higher scores indicating a stronger 

likelihood of a match. We determined a positive match with a score of 67% or higher. We used 

this threshold as optimal balance between identifying positive matches, managing computational 

resources, and data limits. We excluded patients whose initial or sole record in SendSS was 

attributed to an HIV diagnosis and those with a documented HIV diagnosis before the study period, 

including those previously diagnosed out-of-state. Furthermore, subsequent STI cases after an 

individual's HIV event were omitted. To maintain data integrity, we also excluded cases from our 

analysis where the missing data exceeded a threshold of 10%. Finally, the dataset was transposed 
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from case-based to a patient-based model, consolidating multiple STI cases into a singular 

composite profile per patient, each with one or more STIs. The process of participant selection is 

illustrated in Figure 1. 

Feature selection 

Our study included diverse features detailed in Table 1, encompassing sociodemographic 

variables such as age, sex assigned at birth, race, and ethnicity. We included the age at STI 

diagnosis and compiled those in an array for individuals with multiple STI occurrences. The 

cumulative non-HIV STI count per patient was also included. Additionally, we cataloged all 

previous non-HIV STIs—including gonorrhea, chlamydia, and syphilis along with its stages—

and, where multiple infections were observed in a single patient, we constructed an array to 

represent this. The time for re-infection interval was categorized by labeling re-infections as those 

occurring at different time intervals from the initial STI(s). Provider type —ranging from urgent 

care centers and private clinics to correctional facilities and health departments, etc.—was also 

organized in an array, when multiple STIs occurred. Lastly, we aligned social vulnerability 

indexes corresponding to the time of STI diagnosis to evaluate the influencing socioeconomic 

context. 

Model development 

After data pre-processing, we stratified patients by sex assigned at birth. We trained separate 

models for males and females, given the variety of biological and behavioral factors influencing 

HIV acquisition in each group. To ensure data completeness, we addressed missing values by 

imputing them with the mean value within the variable. Our dataset encompassed diverse features, 

with numerical, categorical, and array data. We adopted a three-fold approach to manage this 

heterogeneity. For numerical data, we implemented normalization to standardize the scale. For 

categorical data, we used one-hot encoding [16] to code the data into numerical feature vectors 

which were then normalized. For array data, we employed an ML methodology to extract 

numerical feature vectors using a Neural Network Autoencoder [17]. This process yielded an array 

of two-dimensional feature vectors for each attribute. To consolidate these two-dimensional 

feature vectors into a single numerical feature vector for each attribute, we employed  a 

dimensionality reduction through T-distributed Stochastic Neighbor Embedding (T-SNE) [18]. T-

SNE transformed the initial two-dimensional feature vector into a one-dimensional feature vector, 

which was then normalized to facilitate the analysis. 

We ensured a balance between individuals with documented HIV and those without for both the 

training and test sets. Given that the class distribution disparity between these two groups was 

significant, at a 1:100 ratio, a potential bias could adversely affect the ML algorithms by neglecting 

the minority class, despite its crucial predictive significance. To address this class imbalance 

challenge, we employed resampling, a technique that involves altering the composition of the 

dataset [19]. Specifically, for our model, we employed 'undersampling', which entails reducing 
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instances from the majority class. Hence, setting a cap for examples from the majority class 

(without documented HIV) based on the total number of cases from the minority class (with 

documented HIV). Consequently, we randomly selected an equivalent number of cases from the 

'without documented HIV' group to match the ‘with documented HIV’ establishing an unbiased 

representation of both classes within the training set [19]. This balance was maintained in both 

male and female groups, with the training set (85%) and the remaining test set (15%) reserved for 

validation. 

Model selection and evaluation  

To identify the most suitable predictive model, we adopted a comprehensive and widely 

recognized strategy known as the "horse race approach" [20]. This technique entails training 

multiple ML algorithms using the same training dataset, enabling us to evaluate their performances 

and select the algorithm that attains the highest predictive accuracy. We selected from a variety of 

established classifiers, each with distinct attributes, strengths, and limitations. The chosen 

classifiers included: Random Forest, Nearest Neighbors, Logistic Regression, Naive Bayes, 

Gradient Boosted Trees [21,22]. Random Forest is an ensemble of decision trees, well-suited for 

handling large, high-dimensional data and robust against overfitting. Nearest Neighbors, 

classifies based on proximity to the closest training examples, being simple and effective for small 

datasets, though it becomes slower with increasing dimensions. Logistic Regression, ideal for 

binary outcomes, easier to implement and interpret but might struggle with complex data 

relationships, like the multifaceted data in our dataset. Naive Bayes, a probabilistic classifier, 

applies Bayes' theorem under strong independence assumptions and is notably efficient with high-

dimensional data. Gradient Boosted Trees incrementally build models in stages by optimizing a 

loss function, proving highly effective for complex datasets in both regression and classification 

tasks [21,22]. Through uniform training and evaluation of each model on the same training data, 

we establish an equitable platform for comparison. Finally, we assessed each model's performance 

via accuracy (proportion of true results), precision (proportion of true positive predictions in 

relation to the total number of positive predictions), recall (proportion of actual positive cases that 

were correctly identified by the model as positive), and F1-score (harmonic mean of precision and 

recall, providing a single measure of the model’s accuracy that considers both the false positives 

and false negatives). 

Ethical considerations 

Institutional Board Review (IRB) approval was obtained through the Georgia Department of 

Public Health IRB Office (DPH IRB #221109). Data-sharing agreements were obtained between 

DPH and the University of Florida. All personal identifiers were removed from the datasets before 

data-sharing to maintain participant confidentiality and comply with legal standards.  
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RESULTS  

Between 2010 and 2021, out of 132,928 STI cases recorded in SendSS, 127,169 met our inclusion 

criteria. When we transposed our dataset from STI-based to patient-based, identifying 85,224 

unique individuals, each with one or more STI cases. Sex-assigned at birth distribution was 54% 

females (45,834) and 46% males (38,935), as detailed in Table 2. Of these, 2,027 individuals 

(2.37%) met our inclusion criteria and had documented incident HIV during the study period, 

including 1,698 males (84%) and 329 females (16%). The male training set (85%) had 1444 

individuals evenly matched with 1444 randomly selected individuals ‘without documented HIV’ 

for a total of 2888 cases for this set. The pattern was maintained for the female group, which 

consisted of 280 in each group for a total of 560 for the training set. The remaining was used as 

the validation test set (15%) which for males included 508 individuals (254 with documented HIV 

and 254 without) and ninety-eight for females (49 with documented HIV and 49 without), as shown 

in Table 3. 

On average, males were diagnosed with STIs at 28 years old and females at 24 (Range 13 to 88 

and 95 respectively). In both groups, the majority were Black—63% of males and 57% of 

females—with a considerable portion having an unspecified race (23% of males and 32% of 

females). The highest number of STI cases recorded per individuals was 18 for males and 23 for 

females. Most experienced just a single STI episode (71% of males and 72% of females), followed 

by two episodes (17% in both males and females). Chlamydia was the predominant STI among 

females, accounting for 79% of episodes, compared to 54% in males. Conversely, gonorrhea was 

the most frequent in males (36%), against 19% in females. Re-infections typically occurred over 

a year later for both males (69%) and females (67%). When reinfections occurred within a year, 

they most often took place between 201-365 days from the initial STI in both genders (12%). 

Males were most often diagnosed at STD Clinics (22.32%) and females at private physician offices 

(40%), with the latter also being the second most common for males (19%) followed by hospitals 

for females (15%). The rarest locations for diagnoses were school based clinics for males (2%) 

and correctional facilities for females (2%). 

Model performance and evaluation 

In the analysis of various models, detailed in Figure 2, Gradient Boosted Trees stood out among 

the classifiers, achieving an 80% accuracy rate in predicting HIV incidence for both male and 

female groups, as detailed in Figure 3. For males, the model correctly identified 203 true negatives 

and 203 true positives. Similarly, for females, the model correctly identified 38 true negatives and 

40 true positives. As depicted by the confusion matrices, the model has comparable precision and 

recall across both genders, although with a slightly higher error rate for females. The precision for 

males stands at 80%, signifying that when the model predicts an HIV case, it is correct around 

80% of the time. For females, the precision is slightly lower at 78%. The recall for males, which 

measures the model's ability to find all actual cases of HIV was also 80%, while for females it is 
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slightly higher at 81%. The F1 score was equal for males and females at 80%, suggesting that the 

model has a balanced performance in identifying true positives and avoiding false negatives.  

In terms of feature influence in prediction, for the male subset, the most influential features in 

order of significance, were: 1. Age at STI diagnosis, 2. Previous non-HIV STI, 3. Provider type, 

4. non-HIV STI count 5. Reinfection interval, and 6. SVI theme four (housing transportation), 

indicating that both demographic and social vulnerability features had a notable influence. On the 

other hand, the predictive factors for the female subset differed slightly, emphasizing: 1. Age at 

STI diagnosis, 2. Ethnicity, 3. Non-HIV STI, 4. Provider type, along with Race and Overall SVI 

and themes two and three. These distinctions highlight the complexity and effectiveness of our 

model, pointing to the necessity of customizing predictive methods according to demographic 

specifics, as illustrated in Figure 4. 

DISCUSSION  

Our model accurately predicted HIV incidence from 2010 to 2021 leveraging de-identified public 

health datasets. Our models highlight sociodemographic factors influencing HIV acquisition 

consistent with similar trends observed throughout the Southern U.S and globally [2, 23, 24] By 

leveraging the capabilities of ML, 'big data', and a social context, our methodology provides a 

comprehensive perspective on the dynamics influencing HIV transmission. Similar approaches 

have been used locally and globally using EMR data and patient registries [6-12, 23,24]; however, 

our study is the first to utilize public health datasets in the U.S to predict HIV incidence.  

Our study introduces advancements in data processing methodology, for handling multimodal 

data, including numerical, categorical, and arrays, as it pertains to HIV. Unlike previous 

approaches [7,13], which converted all features into numerical or categorical data, which could 

lead to information loss, our methodology effectively processes array data using established ML 

algorithms such as autoencoders. Additionally, we employed dimensionality reduction algorithms, 

transforming multidimensional data into a one-dimensional numerical feature, which can be 

integrated with other numerical and categorical features for training machine learning classifiers. 

In our study, age at first STI diagnosis emerged as the most predictive factor for both genders, 

similar to a study from Sub-Saharan Africa [23]. For males, additional predictors included prior 

non-HIV STI occurrences and social vulnerability features, paralleling findings from other studies 

where socio-behavioral factors played a significant role [6,23,25]. As in other studies, these factors 

took precedence over race and ethnicity in males, echoing concerns about dataset biases and model 

fairness raised in the literature [26, 27]. For females, ethnic background and STI-related variables 

were predictors, aligning with insights on gender-specific risk factors seen in studies from the U.S 

and Africa [13, 25]. The identification of socioeconomic factors as influential predictors in these 

models underscores their suitability for guiding public health interventions [6]. By accurately 
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identifying individuals at heightened risk of HIV acquisition, these models could become valuable 

tools for developing strategies prioritizing individuals for HIV testing and prevention.  

The strength of our study lies in its reliance on datasets routinely accessed by public health 

professionals, enhancing the practicality of integrating and implementing these models into 

existing public health frameworks. Our models demonstrate a proof of concept in effectively 

identifying individuals at an elevated risk of HIV acquisition within a population already at 

elevated risk, those with a history of STIs. This approach could offer strategic direction for 

enhanced HIV testing and PrEP referrals, particularly in areas with high-incidence and challenges 

associated to resources and or public health staffing. These tools could also guide public health 

officials in identifying disproportionately impacted areas, such as census tracts, for focused 

outreach efforts. 

Our study recognizes key limitations. (i), our model's reliability hinges on the accuracy and 

completeness of its datasets. A significant amount of unspecified racial data may impact the 

model's precision, bias, and utility. Data biases, stemming from unrepresentative training data of 

the target population, could lead to inaccurate predictions. In this pilot phase, we acknowledge the 

need for data preprocessing that incorporates fairness approaches for a more human-centric model. 

This involves ensuring group fairness for statistical parity and individual fairness for consistent 

decisions [28]. (ii), our model might not accurately identify undiagnosed HIV cases, and excluding 

records with over 10% missing data might omit pertinent cases. (iii), it only assesses HIV risk in 

individuals with reportable STIs, limiting its applicability beyond this group. (iv), as our study is 

based in Fulton County, an urban and diverse area, it may not fully capture the broader, often rural 

Southern HIV epidemic, thus limiting our findings' broader applicability. Nonetheless, all Georgia 

jurisdictions use our model's datasets. 

Future research should focus on: 1) Reducing prediction bias in models through better inclusion 

criteria and fairness; 2) Improving model explainability for healthcare professionals and 

policymakers; 3) Utilizing real-time or prospective data for real-time public health strategies; 4) 

Applying implementation science frameworks assessing the integration of these models in public 

health practice, like enhancing HIV testing and PrEP referrals; 5) Conducting qualitative research 

with stakeholders for best practices deploying these tools; 6) Strategies for improving data quality, 

including variables like gender-identity and location; 7) Prioritizing ethical considerations and 

community involvement for equitable, privacy-conscious model use. These steps aim to enhance 

the effectiveness and ethical use of predictive models in healthcare. 

NOTES 

Financial support. The authors have no conflict of interest to disclose related to this work.  

ACCEPTED M
ANUSCRIP

T



 

DOI: 10.1093/cid/ciae100 9 

Potential conflicts of interest. C. S. reports grants from the National Institutes of Health and 

Consultancy as Medical Advisor for the Office of HIV/AIDS for the Georgia Department of Public 

Health, and ViiV Healthcare. All other authors report no potential conflicts. All authors have 

submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the 

editors consider relevant to the content of the manuscript have been disclosed. EB reports PCHD 

grant support. 

REFERENCES 

Fauci AS, Redfield RR, Sigounas G, Weahkee MD, Giroir BP. Ending the HIV Epidemic: A Plan for the 

United States. JAMA. 2019 Mar 5;321(9):844-845. doi: 10.1001/jama.2019.1343. PMID: 

30730529. 

Centers for Disease Control and Prevention. HIV Surveillance Report, 2021; vol. 34. 

http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html. Published May 2023. Accessed 

[11/13/2023]. 

Doherty R, Walsh JL, Quinn KG, John SA. Association of Race and Other Social Determinants of Health 

With HIV Pre-Exposure Prophylaxis Use: A County-Level Analysis Using the PrEP-to-Need 

Ratio. AIDS Educ Prev. 2022 Jun;34(3):183-194. doi: 10.1521/aeap.2022.34.3.183. PMID: 

35647866; PMCID: PMC9196948. 

Bunting SR, Hunt B, Boshara A, Jacobs J, Johnson AK, Hazra A, Glick N. Examining the Correlation 

Between PrEP Use and Black:White Disparities in HIV Incidence in the Ending the HIV Epidemic 

Priority Jurisdictions. J Gen Intern Med. 2023 Feb;38(2):382-389. doi: 10.1007/s11606-022-

07687-y. Epub 2022 Jun 9. PMID: 35678988; PMCID: PMC9905374. 

Centers for Disease Control and Prevention. Estimated HIV incidence and prevalence in the United 

States, 2017–2021. HIV Surveillance Supplemental Report, 2023; 28 (No.3). 

http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html. Published May 2023. Accessed 

[11/13/2013]. 

Balzer LB, Havlir D V, Kamya MR, Chamie G, Charlebois ED, Clark TD, et al. Machine learning to 

identify persons at high-risk of human immunodeficiency virus acquisition in rural Kenya and 

Uganda. Clin Infect Dis. (2020) 71(9):2326–33. 10.1093/cid/ciz1096  

Marcus JL, Hurley LB, Krakower DS, Alexeeff S, Silverberg MJ, Volk JE. Use of electronic health 

record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a 

modeling study. lancet HIV. (2019) 6(10):e688–95. 10.1016/S2352-3018(19)30137-7  

Zheng W, Balzer L, van der Laan M, Petersen M, Collaboration S. Constrained binary classification using 

ensemble learning: an application to cost-efficient targeted PrEP strategies. Stat Med. (2018) 

37(2):261–79. 10.1002/sim.7296 

Orel E, Esra R, Estill J, Marchand-Maillet S, Merzouki A, Keiser O. Prediction of HIV status based on 

socio-behavioral characteristics in East and Southern Africa. PloS one. (2022) 17(3):e0264429.  

Krakower DS, Gruber S, Hsu K, Menchaca JT, Maro JC, Kruskal BA, et al. Development and validation 

of an automated HIV prediction algorithm to identify candidates for pre-exposure prophylaxis: a 

modeling study. Lancet HIV. (2019) 6(10):e696–704. 10.1016/S2352-3018(19)30139-0  

Feller DJ, Zucker J, Yin MT, Gordon P, Elhadad N. Using clinical notes and natural language processing 

for automated HIV risk assessment. J Acquir Immune Defic Syndr. (2018) 77(2):160. 

10.1097/QAI.0000000000001580 

ACCEPTED M
ANUSCRIP

T



 

DOI: 10.1093/cid/ciae100 10 

Xu X, Ge Z, Chow EPF, Yu Z, Lee D, Wu J, et al. A machine-learning-based risk-prediction tool for HIV 

and sexually transmitted infections acquisition over the next 12 months. J Clin Med. (2022) 

11(7):1818. 10.3390 

Burns CM, Pung L, Witt D, Gao M, Sendak M, Balu S, Krakower D, Marcus JL, Okeke NL, Clement 

ME. Development of a Human Immunodeficiency Virus Risk Prediction Model Using Electronic 

Health Record Data From an Academic Health System in the Southern United States. Clin Infect 

Dis. 2023 Jan 13;76(2):299-306. doi: 10.1093/cid/ciac775. PMID: 36125084; PMCID: 

PMC10202432. 

United States Census Bureau. "QuickFacts Fulton County, Georgia" 2020 Census of Population and 

Housing, [https://www.census.gov/quickfacts/fultoncountygeorgia]. 

Centers for Disease Control and Prevention/ Agency for Toxic Substances and Disease Registry/ 

Geospatial Research, Analysis, and Services Program. CDC/ATSDR Social Vulnerability Index 

[2020] Database [Georgia]. 

https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html. Accessed on 

[11/13/2023]. 

Seger C. An investigation of categorical variable encoding techniques in machine learning: binary versus 

one-hot and feature hashing [Internet] [Dissertation]. 2018. (TRITA-EECS-EX). Available from: 

https://urn.kb.se/resolve? 

Wang, W., Huang, Y., Wang, Y., & Wang, L. (2014). Generalized autoencoder: A neural network 

framework for dimensionality reduction. In Proceedings of the IEEE conference on computer 

vision and pattern recognition workshops (pp. 490-497). 

Gisbrecht, A., Schulz, A., & Hammer, B. (2015). Parametric nonlinear dimensionality reduction using 

kernel t-SNE. Neurocomputing, 147, 71-82. 

Ali, M. M. (1998). Probability models on horse-race outcomes. Journal of Applied Statistics, 25(2), 221-

229 

Wongvorachan T, He S, Bulut O. A Comparison of Undersampling, Oversampling, and SMOTE Methods 

for Dealing with Imbalanced Classification in Educational Data Mining. Information. 2023; 

14(1):54. https://doi.org/10.3390/info14010054 

Allan, K. (1977). Classifiers. Language, 53(2), 285-311. 

Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 

2001;1189–232. 

Mutai CK, McSharry PE, Ngaruye I, Musabanganji E. Use of machine learning techniques to identify 

HIV predictors for screening in sub-Saharan Africa. BMC Med Res Methodol. 2021 Jul 

31;21(1):159. doi: 10.1186/s12874-021-01346-2. PMID: 34332540; PMCID: PMC8325403. 

He J, Li J, Jiang S, Cheng W, Jiang J, Xu Y, Yang J, Zhou X, Chai C, Wu C. Application of machine 

learning algorithms in predicting HIV infection among men who have sex with men: Model 

development and validation. Front Public Health. 2022 Aug 25;10:967681.  doi: 

10.3389/fpubh.2022.967681. PMID: 36091522; PMCID: PMC9452878.  

Birri Makota RB, Musenge E. Predicting HIV infection in the decade (2005-2015) pre-COVID-19 in 

Zimbabwe: A supervised classification-based machine learning approach. PLOS Digit Health. 

2023 Jun 7;2(6):e0000260. doi: 10.1371/journal.pdig.0000260. PMID: 3728 5368; PMCID: 

PMC10246851. 

ACCEPTED M
ANUSCRIP

T



 

DOI: 10.1093/cid/ciae100 11 

Huang J, Galal G, Etemadi M, Vaidyanathan M.Evaluation and Mitigation of Racial Bias in Clinical 

Machine Learning Models: Scoping Review.JMIR Med Inform 2022;10(5):e36388.doi: 

10.2196/36388 

Facente SN, Lam-Hine T, Bhatta DN, Hecht J. Impact of Racial Categorization on Effect Estimates: An 

HIV Stigma Analysis. Am J Epidemiol. 2022 Mar 24;191(4):689-695. doi: 10.1093/aje/kwab289. 

PMID: 34999778. 

AI Fairness 360. LF AI Incubation Project. [Internet]. [cited 2024 Jan 26]. Available from: https://ai-

fairness-360.org/ 

TABLES AND FIGURES 

Table 1. Displays data sources from Fulton County - Georgia's notifiable diseases from 2010-

2021. Features are categorized by type and considerations. Data manipulation techniques, such as 

array development for patients with multiple STI diagnoses, are noted to clarify the approach to 

data integration and analysis. ID=Identification; SVI=Social vulnerability index; STI= Sexually 

transmitted infection; HIV=human immunodeficiency virus; CAT=categorical variable; 

CONT=continuous variable; ARRAY= list of categorical values 

Table 1. Data sources and variables included in model development. Fulton County - Georgia 2010-2021. 

Georgia's State Electronic Notifiable Disease Surveillance System (SendSS) Enhanced HIV/AIDS Reporting System 

(eHARS). 

Variable Name Type  Considerations Variable  Type  Considerations  

Patient ID  CAT  Transposed data to include a single patient 
with all STI cases in one record. 

Matched HIV 
diagnosis 
during study 
period. 

CAT  Used probability 
matching between 
datasets using 
sociodemographic 
information.  Sex assigned at birth  CAT Stratified models for male and females  

Race CAT  

Ethnicity  CAT  

Age at STI diagnosis  CAT 

ARRAY 

For patients with multiple cases, we 
developed an array for the age at each STI 
diagnosis 

Previous Non-HIV STI CAT 

ARRAY 

Non-HIV STI event (i.e., Chlamydia, 
gonorrhea, syphilis stage). For patients with 
multiple cases, we developed an array for 
each previous non-HIV STI  
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Non-HIV STI count NUM Count of non-HIV STI events  

Re-infection interval  CAT 

ARRAY 

Time lapses for each STI re-infection in 
intervals. For patients with multiple cases, we 
developed an array with the interval between 
each STI diagnosis 

Provider type CAT 

ARRAY 

i.e., Hospital, clinic, correctional system, etc. 
For patients with multiple STI cases, we 
developed an array for diagnosing provider at 
each STI diagnosis 

Overall, SVI CAT  Used quintiles of the first case in the dataset 

 SVI Theme 1 (socioeconomic status) 

 SVI Theme 2 (household composition, disability) 

 SVI Theme 3 (minority status, language)  

 SVI Theme 4 (housing, transportation)  

Table 2. Sociodemographic features, sexually transmitted infection (STI) data, and social 

vulnerability data, stratified by sex assigned at birth, and documented HIV status. 

Features 
Total Patients meeting eligibility 

criteria N=85,224 

Patients With Documented 

positive HIV N= 2,027 

Sex assigned at birth Male N=38,935 Female N= 45,834 Male N=1,698 Female N= 329 

Age at STI mean (range) 

Age at STI mean (range) 28 (13-88) 24 (13-95) 27 (14-71) 23 (13-65) 

Age at STI diagnosis 

Age at STI range N (%) N (%) N (%) N (%) 

0-18  5577(9.45) 13606(20.12) 190(6.68) 93(16.40) 

19-24 20479(34.70) 31982(47.29) 1112(39.07) 309(54.50) 

25-34 21385(36.24) 17329(25.62) 1130(39.70) 134(23.63) 

35-45 7633(12.93) 3513(5.19) 293(10.30) 22(3.88) 

>50 3941(6.68) 1198(1.77) 121(4.25) 9(1.59) 

Total 59015 67628 2846 567 
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Race (%) 

 N (%) N (%) N (%) N (%) 

AI/AN 236(0.61) 58(0.13) 3(0.18) 0(0.00) 

Asian 0(0.00) 254(0.56) 8(0.47) 1(0.30) 

Black 24646(63.50) 26372(57.67) 1384(81.51) 263(79.94) 

White 4213(10.85) 3238(7.08) 194(11.43) 16(4.86) 

Hawaiian/Pacific Islander 15(0.04) 25(0.05) 1(0.06) 1(0.30) 

Multi-racial 139(0.36) 126(0.28) 9(0.53) 0(0.00) 

Other race 515(1.33) 795(1.74) 17(1.00) 4(1.22) 

Unknown 9050(23.32) 14862(32.50) 82(4.83) 44(13.37) 

Total 38814 45730 1698 329 

Ethnicity (%) 

 N (%) N (%) N (%) N (%) 

Hispanic 1139(2.96) 1020(2.28) 61(3.61) 12(3.67) 

Non-Hispanic 26686(69.34) 2633(58.95) 1532(90.54) 254(77.68) 

Unknown 10657(27.69) 17315(38.76) 99(5.85) 61(18.65) 

Refused 3(0.01) 2(0.00) 0(0.00) 0(0.00) 

Total 38485 44674 1692 327 

Non-HIV STI count (%) 

 N (%) N (%) N (%) N (%) 

Single episode 27777(71.34) 33070(72.15) 1081(63.66) 206(62.61) 

2 6852(17.60) 8002(17.46) 356(20.97) 66(20.06) 

3 2289(5.88) 2666(5.82) 139(8.19) 28(8.51) 

4 960(2.47) 1073(2.34) 57(3.36) 14(4.26) 

>5 1057(2.71) 1023(2.23) 65(3.83) 15(4.56) 

Total 38935 45834 1698 329 

Previous non-HIV STIs (%) 

 N (%) N (%) N (%) N (%) 

Gonorrhea 21474(36.38) 13009(19.24) 1370(48.14) 150(26.46) 
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Primary Syphilis 538(0.91) 40(0.06) 55(1.93) 0(0.00) 

Chlamydia 32176(54.51) 53377(78.93) 830(29.16) 396(69.84) 

Syphilis, other 4838(8.20) 1202(1.78) 591(20.77) 21(3.70) 

Total 59026 67628 2846 567 

Reinfection interval (%) 

 N (%) N (%) N (%) N (%) 

 Initial STI (s) 0-15 days 42066 48468 1893 360 

Reinfection at 16 - 30 days 62(0.37) 57(0.30) 8(0.84) 2(0.97) 

Reinfection at 31 - 60 days 595(3.51) 833(4.35) 36(3.78) 9(4.35) 

Reinfection at 61 - 90 days 551(3.25) 763(3.98) 29(3.04) 9(4.35) 

Reinfection at 91 - 120 days 577(3.40) 693(3.62) 48(5.04) 7(3.38) 

Reinfection at 121 -150 days 467(2.75) 599(3.13) 41(4.30) 9(4.35) 

Reinfection at 151 - 200 days 832(4.91) 949(4.95) 56(5.88) 4(1.93) 

Reinfection at 201 - 365 days 2200(12.97) 2442(12.75) 161(16.89) 28(13.53) 

Reinfection at > 366 days 11676(68.84) 12824(66.93) 574(60.23) 139(67.15) 

Total 16960 67628 953 567 

Provider type (%) 

 N (%) N (%) N (%) N (%) 

STI Clinic 13652(22.32) 7410(11.84) 684(24.03) 118(20.27) 

Private Physician 11788(19.28) 24913(39.82) 499(17.53) 195(33.51) 

Hospital 8757(14.32) 9408(15.04) 391(13.74) 93(15.98) 

HIV Counseling Testing Site 656610.74) 1969(3.15) 551(19.36) 11(1.89) 

Hospital ER/Urgent Care 4358(7.13) 4715(7.54) 150(5.27) 22(3.78) 

Correctional Facility 1640(2.68) 1041(1.66) 65(2.28) 15(2.58) 

Laboratory 1577(2.58) 2704(4.32) 68(2.39) 17(2.92) 

School - based clinic 1524(2.49) 2255(3.60) 99(3.48) 4(0.69) 

Other 11294(18.47) 8146(13.02) 339(11.91) 107(18.38) 

Total 61156 62561 2846 582 

Theme 1 (Socioeconomic Status) 
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 N (%) N (%) N (%) N (%) 

1 7237(18.59) 7404(16.15) 320(18.85) 25(7.60) 

2 5949(15.28) 7263(15.85) 263(15.49) 49(14.89) 

3 5797(14.89) 7439(16.23) 258(15.19) 72(21.88) 

4 6333(16.27) 7077(15.44) 304(17.90) 59(17.93) 

5 5061(13.00) 7046(15.37) 240(14.13) 73(22.19) 

Missing 8558(21.98) 9605(20.96) 313(18.43) 51(15.50) 

Total 38935 45834 1698 329 

Theme 2 (Household Composition) 

 N (%) N (%) N (%) N (%) 

1 7182(18.45) 6199(13.52) 387(22.79) 32(9.73) 

2 7012(18.01) 7834(17.09) 278(16.37) 35(10.64) 

3 5498(14.12) 7256(15.83) 250(14.72) 65(19.76) 

4 5258(13.50) 7586(16.55) 234(13.78) 75(22.80) 

5 5427(13.94) 7354(16.04) 236(13.90) 71(21.58) 

Missing 8558(21.98) 9605(20.96) 313(18.43) 51(15.50) 

Total 38935 45834 1698 329 

Theme 3 (Race/Ethnicity/Language) 

 N (%) N (%) N (%) N (%) 

1 7013(18.01) 6329(13.81) 342(20.14) 38(11.55) 

2 5862(15.06) 7523(16.41) 280(16.49) 70(21.28) 

3 5758(14.79) 7653(16.70) 257(15.14) 54(16.41) 

4 6117(15.71) 7139(15.58) 257(15.14) 53(16.11) 

5 5630(14.46) 7585(16.55 249(14.66) 63(19.15) 

Missing 8555(21.97) 9605(20.96) 313(18.43) 51(15.50) 

Total 38935 45834 1698 329 

Theme 4 (Housing/Transportation) 

 N (%) N (%) N (%) N (%) 

1 6305(16.19) 7830(17.08) 259(15.25) 46(13.98) 
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2 6259(16.08) 7570(16.52) 249(14.66) 54(16.41) 

3 5653(14.52) 6833(14.91) 293(17.26) 68(20.67) 

4 6228(16.00) 7180(15.67) 309(18.20) 47(14.29) 

5 5932(15.24) 6816(14.87) 275(16.20) 63(19.15) 

Missing 8558(21.98) 9605(20.96) 313(18.43) 51(15.50) 

Total 38935 45834 1698 329 

Overall, SVI (%) 

 N (%) N (%) N (%) N (%) 

1 7183(18.45) 6948(15.16) 331(19.49) 27(8.21) 

2 6228(16.00) 7486(16.33) 280(16.49) 46(13.98) 

3 5864(15.06) 7372(16.08) 252(14.84) 68(20.67) 

4 5836(14.99) 7012(15.30) 294(17.31) 61(18.54) 

5 5266(13.53) 7411(16.17) 228(13.43) 76(23.10) 

Missing 8558(21.98) 9605(20.96) 313(18.43) 51(15.50) 

Total 38935 45834 1698 329 

Table 3. Details the training and test dataset breakdown by sex assigned at birth, alongside 

precision and accuracy metrics for the model's classification performance.  

Sex assigned at birth Training data (85%) Test data (15%) Precision  Accuracy 

Male 2888 (1444 with and without each) 508 (254 with and without each) Neg: 80% 

Pos: 80% 

80% 

Female 560 (280 with and without each) 98 (49 with and without each) Neg: 80% 

Pos: 78% 

80% 
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FIGURES 

Figure 1. Shows the methodology for matching SendSS and eHARS datasets from Fulton County 

Georgia from 2010 to 2021. From 132,928 STI cases, 5,729 were excluded. Transposition from 

case-based to patient-based led to 85,224 individuals, which were then matched to a Social 

Vulnerability quintile and categorized by sex assigned at birth and documented HIV status. 

 

Figure 2. Shows confusion matrices for various machine learning algorithms. True positives, true 

negatives, false positives, and false negatives are reported for GradientBoostedTrees, Naive Bayes, 

Logistic Regression, Nearest Neighbors, and Random Forest, with accuracy scores below each 

matrix. *Similar performance metrics were seen in the Female subgroup (not displayed in this 

figure).  
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Figure 3. Gradient boosted trees confusion matrices present the performance for males (LEFT) 

and females (RIGHT) both with an accuracy of 80% with balanced precision and recall across 

classes. Both models exhibit comparable error rates.  

 

Figure 4. Displays the influential features for our predictive model males (left) and females (right). 

Each bar represents a feature's influence on the model's predictions. Longer bars indicate greater 

influence. 
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