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ABSTRACT
This article presents a novel architecture design workflow that explores the intersection 
of Big Data, Artificial Intelligence (AI), and storytelling by scraping, encoding, and mapping 
data, which can then be implemented through Virtual Reality (VR) and Augmented Reality 
(AR) technologies. In contrast to conventional approaches that consider AI solely as an 
optimization tool, this workflow embraces AI as an instrument for critical thinking and idea 
generation. Rather than creating new AI models, this workflow encourages architects 
to experiment with existing ones as part of their practice. The workflow revolves around 
the concept of "Canonical architecture," where data-driven techniques serve to traverse 
dimensions and representations, encompassing text, images, and 3D objects. The data 
utilized consists of information specific to the project, gathered from social media posts, 
including both images and text, which provide insights into user needs and site charac-
teristics. Additionally, roughly 9,000 3D models of architectural details extracted from 38 
different architectural projects were used. The primary objective is to assist architects in 
developing a workflow that does not suggest starting from scratch or a tabula rasa, but to 
work with already hyper-connected objects, be it text, images, 3D models, et cetera. These 
conceptualizations can then be enacted in game engines and/or experimented with in AR/
VR platforms, while keeping their connections alive. Through this process, the framework 
aims to develop a sensibility of working with large amounts of data without losing focus, 
and letting the electric grounds of the internet help us in articulating projects.
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INTRODUCTION: THE INDEXICAL AND THE 
GENERATIVE
The rapid advancement of AI algorithms and open-source 
datasets has revolutionized various industries, including 
architecture (Hovestadt, Hirscheberg, and Fritz 2020; 
Chaillou, 2021). Open-source datasets provide a vast 
amount of information that enhances architectural proj-
ects, while big data plays a vital role in training Generative 
Algorithms (GA) and optimizing Search Engine (SE) indexing. 
Generative Algorithms generate new information through 
interpolation (Newton 2019), whereas SE retrieves relevant 
results through efficient scanning and indexing based on 
specific keywords (Alvarez Marin 2020). Currently, there 
is a significant focus on GA using diffusion models, like 
mid-journey and DALL-e algorithms (Zhang et al. 2023b), 
trained on extensive internet-based big data. Moreover, 
powerful Large Language Model (LLM) algorithms, such 
as ChatGPT, have also surged in generating texts with 
user-friendly functionality (Zhang, et al. 2023a). With these 
algorithms, it is crucial to carefully construct questions 
to counteract the algorithms' tendency for unjustified 
responses, known as hallucination (Alkaissi and McFarlane 
2023). Hence, the following question arises: how can 
these technologies be utilized to overcome the halluci-
nation problem? This is where search engines introduce 
another methodology to address this problem. The output 
of a search engine is grounded in existing indices, always 
based on real data, thus circumventing the challenges of 
hallucination encountered with GA and LLM (Alkaissi and 
McFarlane 2023). The critical factor lies in the dataset to 
be parsed, emphasizing the importance of curation and 
personalization to address project-specific inquiries. 

This article presents a framework that incorporates 
search engines into architectural design processes, 
advocating against starting from scratch and, instead, 
leveraging preexisting loaded data and information, 
including text, images, 3D models, and more. These concep-
tualizations can be further explored using traditional 
3D software or experimented with in AR/VR platforms. 
Through this approach, the framework aims to cultivate 

a sensibility for working with vast amounts of data, while 
maintaining focus and effectively utilizing the available 
online resources to articulate architectural projects. 
As proof-of-concept, this methodology was applied in a 
6-week-long workshop involving architecture students.

METHODOLOGY: ARTICUL ATING JOINTS IN 
MANY DIMENSIONS
This section is organized into three modules: Mapping 
Big Data, Collapsing Dimensions, and Staging Multi-
dimensional Stories. These modules were applied to the 
initial conceptual stage in the design process.

Mapping Big Data
Accessing the plenty
The workshop utilized AI algorithms to crawl the internet 
for information about site and users; and 3D models of 38 
notable architectural projects (Appendix 1). Data were 
collected in two modalities - Images and 3D Models.

Images: To gather relevant data for our analysis, we 
employed an automated scraping tool specifically designed 
to extract social media posts (Figure 1). This tool allowed 
us to collect both images and text based on specified 
keywords, time ranges, and location criteria. The primary 
objective was to conduct a comprehensive site anal-
ysis and gain insights into user needs within a specific 
geographical context. This approach allows us to gather 
data encompassing various dimensions, such as senti-
ment (based on keywords), time (based on a specified time 
range), and geography (based on location criteria). 

Models: We collected 3D models of canonical architecture, 
a total of 38 projects, mostly at the scale of small houses 
(See Appendix 1 for a list). These projects were drawn 
primarily from two publications curated by the authors 
as key projects of the 20th century (Davies 2006; Weston 
2004). Moreover, the supplied CAD drawings gave a rela-
tively precise foundation on which to reconstruct the 3D 
models of these projects (Figure 2).

2 3D data type example.

LEARNED ECOLOGIES



ACADIA 2023562562

Dimensional Transversality
The collected data was preprocessed by cleaning and opti-
mizing the 3D data and image resizing for 2D data. We also 
used AI algorithms, such as autoencoders (Simonyan and 
Zisserman 2015) and Fourier transform (Bracewell 1965) 
to extract feature vectors and encode their modality into 
numerical representations.

Images: We used a pre-trained Convolutional Neural 
Network (CNN) called VGG16 (Simonyan and Zisserman 
2015) to extract feature vectors from the images. A 
convolutional neural network is a class of artificial neural 
networks specifically designed to process pixel data and 
detect complex imagery patterns that cannot be explic-
itly formulated using other methods. VGG16 was trained 
with a large image dataset of different objects to perform 
image classification tasks. A trained VGG16 iteratively 
conducts non-linear operations on the input image of 224 
x 224 x 3 pixels to reduce the size of the input image by 
each operation, and eventually converts the input image 
to a 1,000-dimensional vector that represents the proba-
bility of the input image being each of the 1,000 predefined 
categories of objects. However, the final 1,000 categories 
are a rather limited way of looking and not fitting well 
with the concept of the workshop. The process of trans-
forming pixel data non-linearly is useful and applicable to 
other kinds of images. Therefore, we modified the original 
VGG16 and discarded the final 1,000-dimensional output. 
The intermediate results, which are 2,048-dimensional 
vectors, were used as the feature vectors for the images. 
These vectors serve as the compressed numerical repre-
sentation of the original images, and allow us to compare 
the similarity of two images, in terms of their styles and 
contents, rather than the pixel colors.

Models: The models were built from scratch or refined into 
clean Non-Uniform Rational B-Splines (NURBS) geometry 
as a preparatory step. Each model was segmented into a 
matrix of eight-foot cubes using recursive boolean oper-
ations with a Rhino Grasshopper definition. Depending 
on project size, this would yield anywhere from 60 to 800 
segmented cubes with embedded architectural elements 
(Figure 3). These outputs were automatically indexed based 
on relative spatial positioning, and exported as sorted OBJ 
files. The fragments were voxelized at roughly 1-1/4” voxel 
size using the Dendro mesh voxelization plugin (Oenning 
2022) so that the geometric pattern could be processed 
and encoded using Fourier transform (Bracewell 1965). 
Fourier transform converts the original voxels into voxels 
of complex numbers that have the same size as the input. 
The output complex voxels describe the frequency compo-
sitions of the original voxels, where the lower-frequency 
part typically encodes the rough shape of the fragment, 
and the higher-frequency part encodes the information 
regarding geometric details. In our workshop, we kept the 
lower-frequency part (10 x 10 x 10 of the complex voxels). 
We discarded the remaining higher-frequency data, as 
the general shape plays a more influential role than the 
detailed patterns in the context of architectural forms and 
spaces. Also, the result voxels are converted from complex 
numbers to their absolute values.

Design Space Representation
After encoding the data modalities, we employed the Self 
Organizing Maps (SOM) algorithm (Kohonen 1982) to serve 
as our search engine for both types of data. The SOM 
performs the crucial task of visualizing the collected data 
in a condensed space, enhancing our ability to navigate and 
comprehend vast amounts of information. By utilizing SOM, 

3 3D data segmentation process examples (Villa Savoye by Le Corbusier, 4x4 House by Tadao Ando).
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we can transform high-dimensional data into a lower-di-
mensional space or “maps”, while preserving the original 
topology. Typically, this transformed space is two- or 
three-dimensional, enabling us to easily visualize clusters 
of data that correspond to the underlying structure of the 
original space. This remarkable feature makes SOM an 
invaluable algorithm for capturing and representing intri-
cate relationships within complex datasets. Furthermore, 
SOM exhibits versatility and performance, achieving 
an 85% success rate when compared to algorithms 

4 Self-Organizing Map (SOM) examples.

specifically designed for the same task (Kohonen 1982). 

Maps Images: Using the SOM on the feature vectors of the 
collected images, the output map curates a selection of 
images organized/clustered based on their feature vector 
similarities (Figure 4). This map was used to create atmo-
spheric collages indexing time and space (Figure 5). Since 
the data was collected using geo coordinates and posting 
time, we could create images representing these aspects 
from various personal viewpoints. 

5 Atmospheric collage examples.
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Maps Models: Using the SOM in the feature vectors of the 
3D models, we were able to create a subsample of selected 
details, as similar details were clustered together (Figure 
6). Since the eight-foot cube dimension always captures a 
substantial building element (floor/ceiling/facade/circu-
lation), distinct features with unique elements stand out, 
while generic ones are filtered out. These are assessed for 
desirable properties, and utilized as seeds for the design 
proposals (Figure 7).

Collapsing Dimensions
Participants used the Oculus Quest 2 and Gravity Sketch, 
a VR modeling program, to explore the potential of 
body-scale modeling to generate derivatives of selected 
canonical building details, including the created atmo-
spheric images (Gravity Sketch Ltd. 2022). Referencing 
the SOM of 3D details created previously, participants 
chose details that embodied specific spatial properties, 
and arranged them loosely in an exquisite-corpse cadavre 
exquis (Brotchie and Gooding 1991) style arrangement, 
taking into account site, scale, and relative spacing 
between these fragments to correspond with expected 
programmatic ideas and requirements. These were 
imported into Gravity Sketch to be simultaneously expe-
rienced and manipulated at 1:1 scale in VR. This sets up a 
situation where the 3D details helped bracket very specific 
spatial conditions, while the interstitial space remained for 
participants to bridge, interpret, and morph. Simultaneous 
collective work between participants occupying the shared 
VR workspace across scales led to an exquisite corpse-
style assemblage of proposals that occupied the site with 
sensitivity to both the detail scale internally, as well as the 
urban scale externally (Figure 8). The sketchy nature of 
the VR modeling tool juxtaposes with the precision of the 
surface modeling, and simultaneously offers the sugges-
tive speculation of a sketch with the precise grounding of 

scale and site.

Staging Multi-Dimensional Stories
The previous work (atmospheric images and exquisite 
corpse-style assemblage) produced with this workflow 
was placed within the environment of the game engine 
Unity (Unity Technologies 2023) to crystallize architec-
tural proposals. Game engines excel at employing objects 
constructed through many modeling techniques through 
any software. Not only that, but game engines are media 
agnostic and can deploy any media; text, images, movies, 
animations, drawings, renders; spaces, thereby finding 
their coherence, not in the specificity of the media or 
geometries, but in the grounding of the narratives. A 
scenographic setting was composed by combining many 
media that actively discuss and construct architectural 
proposals through scale, context, elements, and details, 
living in multiple worlds at the same time. The games of 
architectural design, such as mass versus void, inside 

6 3D models voxelized SOM.

7 3D models selection process.
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versus outside, and geometry versus texture, were used 
as tools for the composition and presentation of each 
project.

Another innovation brought on by game engines is real-
time rendering, which suggests that the space of design 
is never without textures, materials, and renderers. 
Participants could test out compositions with the lighting 
and context in place, collapsing the traditional workflow 
of drawing-modeling-rendering. Within this workflow, 
rendering is not as a “representational device” but as an 
operative space, where multiple media could be played 
in parallel, going beyond a simulation of photo-realism 
to a projective stylization within the mechanics of story-
telling. The previously mapped images and models, and 
VR sketches, are placed within a rendering environ-
ment where the post-processing takes precedence over 
geometric modeling (Figure 9). Always focused on the 
narrative layer of the project, game engines deal with 
objects that are always active, communicating asynchro-
nously with each other within a space that is also always 
alive.

DISCUSSION AND CONCLUSION
The proposed workflow introduced an approach to inte-
grating AI and storytelling technologies into architectural 
design, revolutionizing a traditional process. Leveraging AI 
algorithms for data collection, processing, and visualiza-
tion enables architects to gather and analyze vast amounts 
of data, providing deeper insights into user needs, and 
urban and spatial issues. By utilizing VR-based modeling 
and collaborative virtual workspaces, participants engage 
in an interactive and creative design process that fosters 
innovation and produces unique proposals. The applica-
tion of AI search engine techniques, instead of generative 
algorithms serves as analytical, conceptual, and geometric 
tools that complement human interpretation, empha-
sizing the designer's intent, rather than subsuming 

8 Collaborative VR modeling proposals from exquisite corpse arrangements.

human creativity under the machine. The incorporation 
of post-processing techniques and pre-modeled 3D 
objects prioritizes the storytelling aspects of architectural 
design. This data-driven approach, combined with real-
time storytelling techniques and VR technologies, offers a 
multi-scalar platform for ideating and developing architec-
tural proposals, bridging the gap between n-dimensional 
connections and tangible representations. By tapping into 
online and curated datasets, projects developed through 
this workflow achieved a high level of specificity, while 
remaining grounded in big data. The role of the architect 
plays in many dimensions, articulating projects in the 
new scale of big data without succumbing to the short-
comings in the large, generalized databases, but instead 
creating personal libraries, keeping the human scale firmly 
embedded within the design process. 

REFLECTIONS AND OUTLOOK
Incorporating multiple datasets into a unified mapping 
procedure poses challenges due to inconsistencies in 
formats and limited accessibility to proprietary data. 
Converting and formatting these datasets for the mapping 
process can be time-consuming. Furthermore, the size of 
3D models used in segmentation raises questions. While 
an initial fixed dimension of eight feet was chosen as a 
compromise, a more adaptable approach would involve 
dynamically scaling the size based on project complexity, 
dimensions, and unique features. This ensures that 
voxelization captures meaningful configurations and 
avoids generic segments. Additionally, incorporating addi-
tional layers of information, such as materials and textures, 
could expand beyond geometric mapping.

By utilizing real-time rendering and game engines, archi-
tectural representations can span various dimensions 
and multimedia spaces, encompassing plans, sections, 
perspectives, pixels, voxels, and maps. This approach 
enables the development of workflows tailored to 
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individuals and projects. As generative image models 
advance, it is crucial to define the architect's role in visu-
alizing the proposal and understanding the impact of these 
imaging techniques.
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APPENDIX 1: LIST OF PROJECTS
01.Therme Vals, Peter Zumthor
02. Douglas House, Richard Meier
03. Villa Shodan, Le Corbusier
04. Kaufmann Desert House, Richard Neutra
05. Villa Maire, Alvar Aalto
06. Mobius House, UN Studio
07. LLC Vienna, Zaha Hadid
08. Maison Bordeaux, OMA
09. Ridgeview House, Zack de Vito
10. Farnsworth House, Mies van der Rohe
11. Koshino House, Tadao Ando
12. Hanse lmann House, Michael Graves
13. Peconic House, Mapos
14. Villa Savoye, Le Corbusier
15. Jewish Museum, Daniel Libeskind
16. Haus Schminke, Hans Scharoun
17. Double House Utrecht, MVRDV
18. Smith House, Richard Meier
19. Horiuchi House, Tadao Ando
20. Falling Water, Frank Lloyd Wright
21. La Tourette, Le Corbusier
22. Fire Island House, Richard Meier
23. Schroder House, Gerrit Rietveld
24. Sayamaike Museum, Tadao Ando
25. Lovell Beach House, Rudolf Schindler
26. Case Study House No.22, Pierre Koenig
27. Capsule K House, Kisho Kurokawa
28. Slit House, Architects H2L
29. 4X4 House, Tadao Ando
30. Delta Shelter, Olson Kundig

31. Fisher House, Louis Kahn
32. Casa DeCanoas, Oscar Niemeyer
33. Tallon House, Ronald Tallon
34. Kalmann House, Luigi Snozzi
35. Casa Gaspar, Alberto Campo Baeza
36. Magney House, Glenn Murcutt
37. Barcelona Pavilion, Mies van der Rohe
38. Shell House, Kotaro Ide
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