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Introduction

Structural design can be regarded as an independent discipline at the interface between architecture and 
structural engineering in which architectural and structural aspects are conceptually interwoven 
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Abstract
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in a non-hierarchical way. The main aim of structural design is to negotiate between freedom of formal 
expression and static requirements by establishing a relationship between the form of a structure and the 
distribution of its internal forces. In the following paragraphs, the notion of typologies and the role of opti-
mization procedures in structural design are briefly discussed since both aspects play a dominant role in 
many structural design processes.

Research background

Beyond typologies.  In the early design phase, structural design concepts are commonly derived from typologi-
cal reference-based considerations.1,2 The definition of typologies implies a categorization of the unique 
relationship between the form of a structure and the related load-bearing behavior (e.g. suspension bridge, 
cable-stayed bridge). Examples for such a categorization can be found in the work of Engel.3 However, as 
pointed out by the renowned structural engineers Ney et al.,4 this typological approach in structural design 
has a “perverse effect,” since “the vocabulary freezes the object, and the object thus frozen assumes a sort of 
inviolable legitimacy.” According to Ney et al.,4 “it is necessary to leave the typological approach behind in 
order to arrive at novel solutions and innovative structural forms.” The necessity to get away from rigid 
typological considerations in the early conceptual design phase is also supported by the work of structural 
designers from the past. In this regard, one of the most relevant examples is given by the Italian engineer 
Musmeci5 (1926–1981), who investigated on new methodologies for the generation of structural forms 
emphasizing the role of science as a creative tool for design. As described in detail in La statica e le strut-
ture,6 Musmeci’s scientific work set the basis for the creation of the so-called “forms without a name.”7 It is 
worth mentioning that the recourse to a non-typological approach does not generally fall on a fertile ground 
within the structural design community.1,2 On the contrary, there is still a strong tendency that enforces 
recipe-like structural design procedures and solutions to become the only modus operandi.8 This trend is 
reflected in many curricula in engineering schools around the world.9–11

Beyond optimization
(Structural) art is solving problems which cannot be formulated before they have been solved. The search goes on 
until a solution is found, which is deemed to be satisfactory. There are always many possible solutions, the search is 
for the best—but there is no best—just more or less good. Ove Arup12

Problems in structural engineering are often regarded as being well defined, thus having only one best solu-
tion. Such a solution is usually searched for through the application of optimization routines.13 However, in 
line with the words of Ove Arup, a conceptual design problem can seldom be described in an explicit form, 
using, for example, clear objective functions. A design problem can be rather characterized as a wicked 
problem,14 in which qualitative and quantitative aspects co-exist.15 In this regard, optimization routines can 
be useful for solving only very specific sub-problems in the engineering domain (e.g. sizing of members, 
topology optimization), but they cannot act as the primary strategy in a structural design problem that by 
nature is nonlinear and is characterized by multiple possible solutions.13,16–18

Objectives and contributions

This article describes an approach to structural design that tries to go beyond the use of typologies and the 
sole application of optimization routines. This approach is enabled through the combination of innovative 
generative methods from the field of equilibrium modeling with state-of-the-art machine learning (ML) 
algorithms. The article represents the outcome of a research collaboration between the Chair of Digital 
Architectonics and the Chair of Structural Design at ETH Zürich, the first results of which were published 
by Fuhrimann et al.19
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The main objectives of this article are:

1.	 To introduce a theoretical and operative structural design framework that allows generating multiple 
novel, diversified, and structurally informed design options that go beyond the conventional canon 
of structural typologies.

2.	 To combine the strengths of human cognition with those of machine-driven computation, in order to 
bring together the subjective evaluation and selection capacity of humans with the ability of machines 
to handle large datasets.

3.	 To introduce a machine-based procedure that allows generating new structural design options by 
learning the design preferences of human designers.

Along with the description of the technical peculiarities, the article presents a case study for the concep-
tual design of a stadium roof. This case study demonstrates the potential of the proposed framework, while 
possibly contributing to the ongoing discussion on the human-machine interaction within the field of struc-
tural design. While several of the techniques used in the proposed framework have been presented before 
(see section “Proposed structural design framework”), the combination and sequence of these operations can 
be regarded as the main contribution of this work. Thanks to its flexibility, it is possible to apply the frame-
work to different contexts and various structural design problems.

The remainder of this article is organized as follows. Section “Proposed structural design framework” 
introduces the underlying methodological scheme for the proposed design framework. Besides, this section 
also describes and contextualizes the four fundamental operations that are at the base of the framework. In 
section “Design experiment,” each operation and the related algorithms are specified and visualized within 
the context of a design case study. Section “Discussion” discusses the contributions of the presented work, 
points out its limitations and indicates possible future developments.

Proposed structural design framework

As highlighted in section “Research background,” the use of existing typologies as the starting point of 
structural design often limits the range of possible design options to a rather small solution space. Moreover, 
the application of pure optimization approaches generally represents an over-simplification of the problem, 
since in a design task, a quantifiable optimum can hardly exist. Thanks to the current developments in the 
field of computer-aided design and ML, both aspects can be questioned and possibly overcome. Strong 
attempts have been made in recent years to shift from pure computerization toward computing,20 and from 
prediction to formation. Hence, changing the “focus from modelling objects towards modelling processes, 
from designing shapes to designing behavior and from defining static digital constructs to the definition of 
computing systems that are capable of reciprocal data exchanges and feedback information.”13

In this regard, a generic scheme of design operations, relationships, and properties, which was formalized 
by Oxman21 in 2006, has been used here as a starting point for the development of the proposed structural 
design framework. This scheme allows describing structural design as an iterative exploration and search 
process. Hence, Oxman’s scheme can be used to encapsulate different design approaches with specific cycles 
of design operations using different media and environments. In the context of structural design, these opera-
tions are typically generation, evaluation, clustering, selection, and regeneration.

Although being derived from Oxman’s scheme, the design framework proposed in this research (Figure 
1, left) presents some conceptual and technical differences. In fact, the sequence of operations applied here 
during a design session is intended to be a variable and user-dependent in itself. That is, the designer is not 
forced to follow a specific, pre-defined sequential order, but is allowed to define individually the sequence, 
the algorithmic settings, and the feedback mechanisms of the operations themselves (Figure 1, right). The 
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following subsections explain the specific role of each design operation within the overarching design 
framework and the related chosen algorithms.

Generation

Within the generative step, the notion of primary generators plays an important role.22 Primary generators 
can be defined as a “broad initial objective or small set of objectives, self-imposed” by the designer, which 
reflect “a personal value judgement rather than the product of rationality.”22 Hence, primary generators have 
the purpose to reduce “the variety of potential solutions to a small class of solutions that is cognitively man-
ageable.”22 Moreover, primary generators rely on multiple aspects of the design, such as problem framing, 
context, and model environment. They “form a starting point, a way into the problem,”22 by defining the 
initial limits of the problem and suggesting the nature of possible solutions.23 Primary generators not only 
have a strong influence on the process but also on the outcome itself. Moreover, it can be argued that in the 
conceptual design phase, a certain diversity within the set of possible solutions is generally beneficial in 
order to get a clearer picture of the “real nature” of the design task.24

A generative approach in structural design should be able to produce a multiplicity of very diverse, yet struc-
turally sound options in a short time. The aim is to obtain a set of structurally informed forms that, on the one 
hand, go beyond the expectable typological references, and on the other hand, are intelligible and not disorgan-
ized in their appearance. Hence, methods in which structural principles such as static rigidity and equilibrium are 
explicitly formulated already in the computational generation of the model itself are of particular interest.

In the proposed framework, the Combinatorial Equilibrium Modeling (CEM)25 is used as a primary gen-
erator and is the main algorithm within the generation step. The CEM is grounded on vector-based three-
dimensional (3D) graphic statics,26 and the equilibrium of a structure is constructed directly, based on a 
specific sequential decomposition of the equilibrium problem. The CEM is available as an open-source 
toolkit (https://github.com/OleOhlbrock/CEM, accessed April 2020), developed using the scripting 

Figure 1.  Diagram illustrating the proposed design framework (left) and personalized design procedures with 
different sequences and combinations of operations (right). The chronology of applied operations by each designer is 
described as a string (e.g. Designer 1 GEECSSCGC), where G stands for generation, E for quantitative evaluation and 
filtering, C for clustering, and S for qualitative evaluation and selection.

https://github.com/OleOhlbrock/CEM
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language IronPython (https://ironpython.net/, accessed April 2020) as a plug-in of the commercial CAD 
software platform McNeel Rhinoceros (https://www.rhino3d.com/, accessed April 2020) and Grasshopper 
(https://www.grasshopper3d.com/, accessed April 2020).

For a given topological diagram T (Figure 2, top), which represents the topology of the structure, the 
CEM algorithm generates the form diagram F as pin-jointed frameworks in equilibrium (Figure 2, bottom 
left), and the related force diagram F* (Figure 2, bottom right). The CEM algorithm is initialized by intro-
ducing a series of topological and metric parameters. The topological parameters, which can be defined 
directly in T, are the connectivity of the structural elements and the combinatorial state of their internal 
forces (i.e. tension, compression, or null). The metric parameters are the trail lengths—that is the lengths of 
the members of F that correspond to the trail edges of T—and the deviation force magnitudes—that is the 
magnitudes of the internal forces of the members of F that correspond to the deviation edges of T. By enforc-
ing the equilibrium of the nodes of the structure in F, the CEM algorithm seeks the equilibrium form associ-
ated with the given T, based on the input topological and metric parameters.25 The equilibrium is imposed 
sequentially starting from the origin nodes of F, which correspond to the origin vertices of T up to the sup-
port nodes of F, which correspond to the support vertices of T. The advantage of the CEM over analysis-
oriented approaches like the Finite Element Method (FEM) is that the CEM allows for a synthetic and 
intuitive representation of static equilibrium. Thus, the CEM can be easily used for the fast generation and 
transformation of equilibrium systems, in which the inner constellation of compression and tension forces is 
used as a key design generator. Moreover, in comparison with other form-finding methods such as the Force 
Density Method (FDM),27 the CEM has possibly the advantage that the metric parameters can be assigned 
and varied directly in absolute physical units like lengths and forces.

Figure 2.  Relationships between the topological T (top), form F (bottom left) and force F* (bottom right) diagrams 
within the CEM framework. Tension is represented in red, compression in blue, and external forces in dark green.

https://ironpython.net/
https://www.rhino3d.com/
https://www.grasshopper3d.com/
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Different methods exist to generate a multiplicity of topologically unpredictable, yet structurally valid 
design options beyond or in-between typological borders.28,29 The contribution of Shea et al.30 is one of the 
first examples for the use of generative methods in structural engineering. The works of Van Buelow31 and 
Brown2 are representative of recent research on interactive evolutionary optimization using parametric mod-
eling. The investigations of Mueller1 and Lee et al.,32 on the contrary, exemplify the use of grammar-based 
generative methods in structural design.

The CEM focuses on the controlled diversity at the topological level while giving relevance to the com-
binatorial state of the internal forces. Hence, through simple variations of compression and tension forces in 
the generative step, a vast formal diversity can be obtained from a common ground topology.19 Such diver-
sity within an explicitly controllable topological set-up potentially helps to find a balance between the unpre-
dictability of structurally driven bottom-up approaches and the challenges connected to the use of explicit 
top-down form-finding strategies.33 As a result, the use of the CEM possibly allows the design process to 
produce structurally informed design options that go beyond a fixed canon of existing typologies while 
remaining explicitly controllable at the topological level.

Quantitative evaluation and filtering

With the use of fast generative methods, the designer has access to several thousands of design options in a 
short amount of time. In order to guide the design process, a generative engine is usually coupled to an opti-
mization routine, which searches for optimal solutions for a given set of hard or/and soft constraints, 
expressed through the definition of objective functions. However, while optimization routines are useful in 
the final converging stages of the design process, in the conceptual phase, designers cannot rely solely on 
their application. In fact, as previously mentioned (see section “Research background”), the design problems 
are ill-defined, and they generally have more than one possible solution. The recourse to quantitative struc-
tural performance measures as the objective functions is not necessarily satisfying in real-world design 
scenarios, as they can drastically reduce the diversity of the possible design options too early. Therefore, 
rather than trying to find an optimum solution with an arbitrary objective function, it would be more appro-
priate to keep the acceptable solutions and to filter out the unacceptable ones.

Within the context of structural design, one can find several well-known structural quantitative measures, 
which are valuable for evaluating the performance of a structure. At the level of global structural behavior, 
particularly relevant are the global stability and the degree of static indeterminacy of a structure, which can 
be assessed based on the equilibrium matrix of the structure,34 as well as the self-weight, and the load path 
(LP)35. At the level of the local structural behavior, of interest are the maximum and minimum internal 
forces, and the local stability of the structural members, which can be evaluated through the slenderness ratio 
(SR) of the structural members (see section “Quantitative evaluation and filtering based on structural 
performance”).

Unlike the typical optimization procedures of structural engineering, in the quantitative evaluation and 
filtering step of the proposed design framework, these quantitative filters are used as hard boundaries. 
Diverse quantitative filters can be applied to a given set of design options sequentially. That is, rather than 
pointing to the best results, these filters are used to delete the unacceptable design options from the space of 
possible design solutions generated in the previous step. For example, the LP of a structure measures how 
the load is transferred through the structure.35 This quantity can be used as an objective function to minimize 
the volume of a compression-only structure.36 However, minimizing the LP of a structure as a design strategy 
does not necessarily help the designer to find innovative structural forms, especially at the early stages of 
design. This point is clearly illustrated in Figure 3, in which structural forms are created using the CEM, 
starting from the same ground topology. Although the structures possess a similar LP, they present a wide 
range of formal variation.
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Figure 3.  Randomly chosen design options for a roof structure with similar load paths (LP) do not necessarily have 
similar forms (structural members with tensile forces are in red and those with compressive forces are in blue).
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Clustering

The scope of clustering operations is to group dynamically various design options into sets with similar 
design features. While in a classical design process based on standard structural typologies, the variation of 
the design parameters leads to slight variations within a given family of forms, by clustering thousands of 
design options, one can expect to obtain new emergent structural typologies. As shown by Fuhrimann et al.,19 
different clusters capture different families of forms, which were generated from the parametric variation of 
the design inputs. Such data-driven catalogs can give the designer valuable insights and new means to further 
explore the design space.

In the proposed framework, the machine provides an intuitive and interactive environment for the cluster-
ing of the design options, while the human designer actively decides how to navigate in the clustered design 
space. Within the literature of ML, one can find different clustering algorithms. For a given vector-based 
representation of the dataset and a choice of a distance (e.g. Euclidean, Cosine, any other LP-norms), these 
algorithms assign a data point to each design option, while minimizing the similarity of data points within 
each cluster and maximizing the dissimilarity between different clusters. Although a typical clustering algo-
rithm such as K-means37 can be seen as a data-reduction method, other algorithms, which are developed 
around the concepts of dimensionality reduction and manifold learning, can also be used for the purpose of 
clustering. Among these algorithms, T-SNE38 or the recently developed UMAP39 are particularly relevant. 
While in algorithms like K-means, the data in each cluster is reduced to only K representative points, in other 
dimensionality reduction methods, the user can visualize a spectrum of all generated design options in rela-
tion to each other, giving a better overview of the overall design space.19

In the proposed framework, the algorithm of choice for clustering is Self-Organizing Map (SOM), which 
takes advantage of both clustering and dimensionality reduction.40 SOM acts as a nonlinear data transforma-
tion in which data from a high-dimensional space is transformed into a low-dimensional space (usually a 
space of two or three dimensions), while preserving the topology of the original high-dimensional space. 
Topology preservation means that if two data points are similar in the high-dimensional space, they are nec-
essarily close in the new low-dimensional space, and, hence, they are placed within the same cluster. This 
low-dimensional space, which is usually represented by a planar grid with a fixed number of points, is called 
a map. Each node of this map has specific coordinates (xi,1, xi,2) and an associated n-dimensional vector or 
Best Matching Unit (BMU), in such a way that similar data points in the high-dimensional space are given 
similar coordinates. Moreover, each node of the map represents the average of the n-dimensional original 
observed data that after iteration belong to this node. In various occasions, SOM has been employed in the 
context of architectural design,41,42 and it can be conveniently used to visualize high-dimensional spaces.43,44 
The implementation of the SOM algorithm used in the present work, and all the other ML algorithms 
described in this and the following sections, have been coded using built-in functions within the software 
Wolfram Mathematica (https://www.wolfram.com/mathematica/, accessed April 2020). The entire code is 
an open source (https://github.com/sakarla/Beyond-typologies-beyond-optimization/, accessed April 2020).

Beside the choice of the clustering algorithm, in the context of structural design, the main challenge is 
how to compare and measure the similarity between two distinct design options, which, in turn, depends on 
how these design options are represented. Table 1 shows various design features related to the input and 
output design parameters. For each combination of design features selected by the human designer, a differ-
ent representation of the generated design options evolves, which possibly leads to a different clustering 
pattern by the machine.

For quantitative features, such as the LP (see section “Quantitative evaluation and filtering”), a single 
scalar value is assigned to each design option. For features such as the distribution of the internal forces in 
the structure, it is necessary to describe the related data distributions for each design option statistically. 
Higher Order Statistics (HOS)45 is used in the proposed design framework to capture the invariances of the 

https://www.wolfram.com/mathematica/
https://github.com/sakarla/Beyond-typologies-beyond-optimization/
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features of the design options on a higher level. In HOS, for a sample of n observations, one could calculate 
up to n moments of data distribution. For example, the commonly used arithmetic mean and standard devia-
tion are defined, respectively, as the first- and the second-order moments of the data distribution. Skewness 
is the third-order moment of the data distribution, which measures the direction of the tail of the distribution 
(at the right or left of the mean) in comparison with the normal distribution. If the resulting number is posi-
tive, the data is skewed to the left, leaving the tail pointing to the right side of the distribution. If the resulting 
number is negative, the tail is on the left side of the distribution. Kurtosis is the fourth-order moment of the 
data distribution, which measures how heavy the tails of a distribution are, or correspondingly, measures the 
pickiness (the shape of the curve, and specifically, the bell of the curve).46 These measures have geometric 
interpretations and are commonly used as shape parameters, which capture information from the dataset.47 
To elaborate more on this point, we give an example of the different interpretations of the LP of a structure 
concerning the HOS measures in Appendix 1.

Qualitative evaluation and selection

In the proposed framework, the inclusion of the preferences by the human designer adds qualitative con-
straints on top of quantitative ones. This approach enables going beyond solely objective functions by con-
sidering those subjective formal qualities perceived by the human designer. Once the solution space is 
generated, evaluated, and clustered, the human designer can select those clusters or single design options 
that have the overall best performance concerning quantitative (measurable) and qualitative (non-measura-
ble) aspects.

Table 1.  Possible ways to represent and compare the design options based on various design features.

Feature Vector representation Description

Trail lengths (input) t = [t1, t2, . . ., tT] where t is the vector containing the lengths of 
the trail members ti, with T the number of trail 
members

Deviation force magnitudes 
(input)

d = [d1, d2, . . ., dD] where d is the vector containing the force 
magnitudes of the deviation members di, with 
D the number of deviation members

Position of origin nodes 
(input)

O = [(O1x, O1y, O1z), . . ., (Onx, 
Ony, Onz)]

where O is the vector containing the position 
of the origin nodes Oi in x, y, z coordinates, 
with n the number of origin nodes

Position of the nodes (output) P = [(P1x, P1y, P1z), .  .  ., (Pmx, 
Pmy, Pmz)]

where P is the vector containing the position 
of the nodes Pi in x, y, z coordinates, with m 
the number of nodes

Members’ lengths (output) l = [l1, l2, . . ., lL] where l is the vector containing the lengths of 
the structural members li, with L the number 
of structural members

Internal forces (output) f = [f1, f2, . . ., fF] where f is the vector containing the force 
magnitudes of the structural members fi, with 
F the number of structural members

Any combination of structural 
quantitative measures 
(see section “Quantitative 
evaluation and filtering”)

the vector representation depends on the 
chosen quantitative measures

The human designer dynamically chooses any combination of these features to describe the design options, and the clustering algo-
rithm automatically identifies the patterns of emergent typologies.
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Techniques that represent high-dimensional data in a comprehensible manner ideally allow a designer to get 
a concise overview of the essence of all the possible options without suffering from evaluation fatigue.48 Thus, 
it can be argued that through the recent developments in the field of ML, human designers can interact with an 
extensive set of possible options at a time. Examples of such a human–machine interaction can be found in the 
tool Biomorpher, developed by Harding and Brandt-Olsen,29 in the work of Menges,13 and the early work of 
Coates et al.49 In the proposed design framework, the designer selects families of design options directly from 
the generated SOM through an interactive user interface. The time spent to select the preferred and non-pre-
ferred options (qualitative evaluation) is directly related to the intuitiveness of the user interface, the aim of 
which is to facilitate the interaction of the designer with the organized clustered of options. As this matter 
would require an extensive discussion, the design of an appropriate user interface is not addressed in the present 
work, but it will be developed in future work.

Regeneration

In case the selected design options are not yet satisfactory, the generation, representation, evaluation, and 
selection operations have to either be repeated or reformulated. A common procedure for iterative regenera-
tion is based on evolutionary strategies. In these approaches, the parameters (genotypes) of the selected 
candidates (phenotypes) generate new candidates, which potentially combine the strengths of the parents, 
and hence outperform the candidates of the previous generation. A full review on the use of evolutionary 
computation in the field of structural design can be found in Kicinger et al.50 In the case of Biomorpher,29 for 
example, after the clustering operation, the human designer can select a cluster of options to continue the 
evolutionary process.

Another approach, which is employed in the proposed design framework, is to use the selected design 
options as labeled training data to be fed into supervised ML algorithms for classification. Commonly ML 
classifiers, such as Decision Tree,51 Random Forest,52 and Gradient-Boosted Trees (GBT),53 aim to map 
from unlabeled instances to classes. A full review of classification techniques can be found in Kotsiantis 
et al.54 In the present research, the selection made by the designer creates label instances to train the ML 
classifier to classify unlabeled data. Hence, the classifier is trained to learn the nonlinear relations between 
the input parameters of the generator and the preferences indicated by the feedback of the human designer. 
Subsequently, the outputs automatically produced by the ML classifier are used as new inputs for the 
generative routines process. In the proposed design framework, the choice of the classifier depends on the 
dataset under investigation since the performance of the classifier is strongly related to the characteristics 
of the dataset.

Design experiment

In this section, a representative design experiment is used to illustrate the potentials of the proposed structural 
design framework, and to describe the related operations and the chosen algorithms in more detail. The exper-
iment is placed within a typical structural design task, which consists in the creation of a new roof for the 
undulating bowl of the Nya Ullevi Stadium in Gothenburg, Sweden. The stadium was initially built for the 
1958 FIFA World Cup and has a seating capacity of 43,000 people. In the design experiment, only those 
design options whose supports match the existing undulating bowl were accepted in order to preserve the 
structural and formal characteristics of the stadium. Moreover, the accepted design options were the ones with 
a slenderness ratio (SR) defined by a quantile of 50% and a load path (LP) defined by a quantile of 80% in 
order to take into account the structural performance.
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Machine-driven generation with CEM

Figure 4 (top left) shows the topological diagram used to initialize the generative process with the CEM. It 
consists of 72 vertices and 130 edges that are organized in 6 sequences. Within the CEM formulation, edges 
are subdivided into two distinct categories (see section “Generation”). On the one hand, trail edges (continu-
ous line in Figure 4, top left), here 60 grouped in 6 sequences, defining 12 trails that connect each vertex with 
a direct load transfer (topologically) to the closest support. On the other hand, deviation edges (dashed lines 
in Figure 4, top left), here 70, that connect vertices on different trails. The metric values that relate to the trail 
edges are the trail lengths, while for the deviation edges are the deviation force magnitudes. In order to gen-
erate various structural forms as design options an automatic random variation of the 130 trail and deviation 
parameters was adopted. For each sequence, a trigonometric function19 defined by three parameters (ampli-
tude, frequency, and phase) was employed to control the 12 independent trail lengths and the 12 independent 
force magnitudes of the sequence at once. As a result, the number of 130 independent metric parameters 
could be reduced to 30; 13 additional parameters were used to describe special geometric features in the first 
and last sequence of the topological diagram and to describe the initial layout of the origin nodes in the form 
diagram. Hence, the random variation was carried out on a higher abstract level that ensured certain regulari-
ties among the individual values and thus prevented complete noise in the design space.55,56

Figure 4 highlights the relationship between the 30 + 13 = 43 input parameters and the resulting 130 val-
ues for the trail and deviation edges that were taken as input for the generation. The output of the CEM 
(Figure 4, bottom, right) is a three-dimensional tensor containing 476 values: the position vector of the nodes 
(72 × 3), the length of the trail members (130, out of which 60 are equivalent to the input values) and the 
force magnitudes of the deviation members (130, out of which 70 are equivalent to the input values). Out of 
this information, a form (Figure 4, top, right) and a force diagram can be constructed unequivocally.

Given the design brief, a gradient-based optimization routine was run to fulfill given geometric boundary 
constraints.25,57 Hence, the objective was to minimize the summed distance ri (least-squares) between each 

Figure 4.  Trigonometric functions map the 43 randomized input values (left) to the list of 130 design parameters 
(center). Together with the topological definition, the design parameters are fed into the CEM algorithm. The latter 
returns a form in equilibrium that can be described by 476 values (right).
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support node and a target strip at the border of the undulating bowl only through a variation of the position 
vectors (3 components each) of the 12 origin nodes. The gradients that contain 12 × 3 = 36 dimensions were 
obtained through finite difference approximation. Figure 5 (left) shows an initial form diagram before opti-
mization, while Figure 5 (right) illustrates the form diagram after optimization.

For the automatic generation of the dataset of forms, only those design options that matched the target 
geometry with a predefined maximum number of iterations and within a given threshold were accepted and 
recorded. The given topological setup allowed generating a vast amount of radically different, unexpected, 

Figure 5.  Initial form diagram with 12 residual distances ri (left) and after the minimization of these distances to 
match the location of the support nodes (right).

Figure 6.  Random sample of 70 generated design options.
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yet structurally informed options (Figure 6). In terms of computation time, each design option was calculated 
in 500 ms with a Quad-Core 2.8 GHz CPU. With parallel computing, 35,205 design options could be pro-
duced in less than 2 hours using a 10-Core 2.5 GHz CPU. These solutions were stored in a CSV file with a 
capacity of 2 GB.

Quantitative evaluation and filtering based on structural performance

In this step, different quantitative filters can be used (see section “Quantitative evaluation and filtering”) to 
reduce the amount of design options. In this design experiment, the local stability was taken into considera-
tion, knowing that members in compression generally require a larger cross-section than the ones in tension. 
Restricting the slenderness ratio (SR) of the members in compression regarded as elements with round hol-
low cross-section can be used to reduce the danger of buckling:

SR
l

i
i

i i i

i

R R W

A

=
− −( )( )π 4 4

4

	 (1)

where li is the length of each structural member, Ri is the outer radius of the round cross-section, wi is the 
wall thickness, and Ai is the cross-section area. Within the design experiment, a quantitative filter was for-
malized selecting the best options with respect to SR (50% quantile). After applying this filter, the number 
of design options was reduced from 35,205 to 17,602.

The second quantitative filter is formulated in relation to the load path (LP), which is the sum of the products 
of the length li of each structural member and the absolute value of the axial force fi acting on the member35

LP = =⋅
=
∑f lT

i

n

i if l
1

| | 	 (2)

where f = [f1, f2, .  .  ., fn] is the vector containing the force magnitudes and l = [l1, l2, .  .  ., ln] is the vector con-
taining the lengths of the structural members in a structure with n structural members.

In the design experiment, LP was used as a second filter (80% quantile). This further reduced the number 
of design options from 17,602 to 14,082.

Clustering with SOM

The 14,082 design options remaining from the previous step were transformed into numerical inputs using 
the four moments of HOS function of the members’ lengths (mean, variance, skewness, and kurtosis; see 
section “Clustering”). This dataset of numerical inputs was fed as input into an SOM with a grid size of 
20 × 20. The appropriate size of SOM’s grid depends on the design task, the resolution of the model, and the 
intention of the designer.33 It has been observed by the authors that the appropriate grid size usually does not 
exceed a dimension of 40 × 40 in order to keep a clear overview of the clustered design options. However, 
more research has to be done to generalize this observation.

As explained in section “Clustering,” SOM can recognize similar patterns among the data and organ-
ize the corresponding options accordingly. The resulting SOM spans over 400 cells or BMUs (see sec-
tion “Clustering”). In Figure 7 (top), the design options displayed are the ones with the closest Euclidean 
distance to its corresponding BMU value. Therefore, they can be considered as representative cases for 
each cell. The trained SOM can additionally visualize the four moments of HOS (Figure 7, bottom), 
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Figure 7.  An SOM of 14,082 filtered design options based on HOS of length of structural members (top). The BMUs of the 
SOM are colored based on each HOS measure: mean, variance, skewness, kurtosis (bottom).
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corresponding to each BMU. The visualization of the four moments of HOS provides a detailed explo-
ration of the design space as it displays specific clusters of design forms highlighted for each moment 
of the HOS. When analyzing the SOM grid with design options, one can recognize at least two different 
families of design options emerging that belong to specific settings in the generative step. In addition, 
it can be observed that the first and last cells contain a larger quantity of design options than all the 
other cells (e.g. cell 1 = 116 and cell 400 = 271). The central cells tend to contain less design options 
(e.g. cell 190 = 1 and cell 152 = 2). The cells that do not contain information are considered as bounda-
ries; this implies that no design options can be placed in-between.

User-based qualitative evaluation

Using the two-dimensional (2D) grid SOM defined in the previous step, the designer can not only get a fast 
and precise overview of possible design options but also distinguish between preferred and non-preferred 
options. As explained before, each cell of the SOM represents a set of multiple design options; therefore, by 
choosing any of them, its associated design options are selected as well. The design options are clustered in 
each cell of the SOM based on the design features selected by the designer. For example, if the design fea-
tures used for clustering are related to the form and the grid size is large enough, the design options in each 
cell will be visually similar.

Figure 8 shows a screenshot of a selection procedure. The developed interface enabled the designer to 
select clusters of design options directly on the SOM. The interface visualizes a sample of structural forms 
contained in the selected node and indicates in real-time how many forms are present within each cell. 
This approach supports an interactive and informed selection. Within this illustrative design experiment, 
the designer selected 2,770 preferred and 2,574 non-preferred options, resulting in a dataset of 5,344 
design options. Figure 8 depicts a sample of the selected options that belong to each list.

Regeneration with GBT and CEM

As explained in section “Regeneration”, in this operation, an ML classifier is trained to learn the nonlinear 
relation between the input parameters of the generator and the preferences indicated by the feedback of the 
human designer. The corresponding parameters that defined the input values to generate the structurally 
informed options with CEM (see section “Machine-driven generation with CEM”) were turned into input 
variables. The preferences of the designer (i.e. preferred = 1 and non-preferred = 0) were assigned labels, thus 
creating a binary numerical labeled dataset combining the designer preferences with the inputs used to gen-
erate the design options (Figure 9).

The dataset was then split into training and test data in a ratio of around 90:10, respectively (training 
data = 4,788 and test data = 556). The training data was fed as input to each ML classifier: Decision Trees 
(with a distribution smoothing of 1 and feature fraction of 1), Random Forest (with a distribution smoothing 
of 0.5, a feature fraction of 0.1524, leaves’ size of 5, and with 50 trees), and GBT (with maximum training 
rounds of 50, 500 leaves, leaves’ size of 35, and a maximum depth of 6). The performance of the obtained 
trained classifiers was then validated with the test data (556). Figure 10 depicts the confusion matrix for the 
three tested ML classifiers, while Table 2 shows detailed information of each classifier. A confusion matrix 
is a specific table layout that allows visualization of the performance of an algorithm. Each row of the matrix 
represents the instances in a predicted class, while each column represents the instances in an actual class (or 
vice versa). The use of a confusion matrix is beneficial for measuring accuracy (i.e. the percentage of correct 
prediction divided by the total number of predictions) and precision (i.e. how consistent the results are when 
measurements are repeated).
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Figure 8.  Screenshot of the interface with the 2D grid SOM and the corresponding selection list: (a) list of design 
options classified as preferred 2,770 and non-preferred 2,574 (b) out of the selected 5,344 options.

Compared to the other two classifiers, GBT was found to have the best performance with the given 
dataset, having an accuracy of 92% and precision for each class as follows: Class 0 → 0.9140625 and 
Class 1 → 0.926666 (Table 2). Commonly, GBT is used for regression and classification problems produc-
ing a prediction model in the form of an ensemble of trees. Trees or weak learners are trained sequentially 
to improve the accuracy and robustness of the final model. In the proposed model, LightGBM approach 
was employed.58 This approach has the following advantages: a faster training speed and higher effi-
ciency, lower memory usage, better accuracy, support of parallel learning, and capability to handle large-
scale datasets.
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For the regeneration routing, random input values were produced based on the range defined by each 
of the 43 parameters (30 + 13) of the CEM (see section “Machine-driven generation with CEM”). These 
parameters were fed in the trained GBT classifier, which then directed these input values into the two 
learned classes (1 or 0). As the output of the trained classifier is probabilistic, the label of each design 
option is based on probabilistic confidence. After setting a threshold on the confidence percentage such 
as 95%, only the options that were above the threshold were selected. The corresponding classified input 
values were then fed into the CEM to generate 6,751 new preferred design options. After regeneration, 
the design options were encoded (HOS) and clustered (SOM) to support a final selection, thus finalizing 
the design experiment.

All the computational tasks described in this section were performed with a Quad-Core 2.7 GHz CPU 
with no GPU acceleration. Figure 11 shows an overview of the design experiment and the time required for 
each design operation. Figure 12 illustrates the renderings of the final selection.

Figure 9.  Example of the binary numerical labeled dataset.

Figure 10.  (a) Confusion matrix of decision trees, (b) confusion matrix of random forest, and (c) confusion matrix 
of gradient-boosting trees.

Table 2.  Different algorithms for classification and their performance with the test dataset.

Classifiers Test examples Training time Accuracy Loss Precision class 1 Precision class 2

Decision tree 556 3.05 s 0.79043 0.45 0.77777 0.80308
Random forest 556 2.65 s 0.89272 0.34 0.88013 0.90530
Gradient-boosted trees 556 4.46 s 0.92036 0.27 0.91406 0.92666

Gradient-boosted trees was selected since it offered the best performance with the given dataset.
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Figure 11.  Overview of the design experiment and time required for each design operation.
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Figure 12.  Renderings of the final selection.

Discussion

The article introduced a computational design framework for the generation of non-standard structural 
forms in static equilibrium, which takes advantage of the interaction between human and machine intel-
ligence. The framework is built upon basic design operations such as generation, evaluation, clustering, 
selection, and regeneration. More precisely, the generative operation is based on CEM for the creation of 
structural forms in static equilibrium as design options. In the operation of clustering, an SOM is employed 
to organize and represent the diversity of design options in a comprehensible manner according to a set of 
design features defined by the human designer (Figure 13). Hence, the organized representation enhances 
the understanding of the full design space and supports decision-making. In addition, HOS is used to 
encode the relevant aspects of the generated options with a high level of precision. Finally, the supervised 
classification algorithm GBT is used for the regeneration of the design options.

The proposed approach to structural design supports a shift from typological to topological thinking. 
Moreover, it proposes that the machine should not only be used to optimize a specific task but rather as an 
instrument that leverages the creativity of the designer.

Figure 13.  Self-organizing map and BMUs colored according to their data and performance features.
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The presented application of the proposed framework to the design of a roof for a stadium suggests that 
the framework is able to support the conception of diverse, yet structurally informed design options in the 
conceptual design phase without the need for a pre-defined, superimposed protocol of operations. To empha-
size the flexibility of the proposed design framework, in Appendix 2, the design process of three additional 
structural designers, who performed the design task presented in section “Proposed structural design frame-
work,” is documented. In future research, the proposed design framework will be further refined and applied 
to different design scenarios. For example, a possible application could be the conceptual design of multi-
story buildings (Figure 14).

Above all, this research tries to contribute to the open-ended question of how the machine could be 
integrated into a human-driven design exploration in a meaningful way. A common challenge that generally 
arises when using these generative approaches is the dichotomy between the desired diversity and com-
pleteness of the design space on the one hand, and the difficulty for humans to interact with a large amount 
of data on the other hand. As pointed out by Nicholas Negroponte on the relationship between machines 
and humans: “The best way to appreciate the merits and consequences of being digital is to reflect on the 
difference between bits and atoms.”60 One could thus argue that machines and humans have fundamental 

Figure 14.  Conceptual design of a multi-story building with varying topology.59
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differences in their internal structure. Indeed, bits can very likely not be used to replace atoms, but they can 
be used to empower them.
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Appendix 1

The load path of a structure (LP) can be formulated as follows

LP = = =
= =
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where LPi is the member load path and LP  is the mean load path. Hence, the load path of a structure LP is 
an average value proportional to the mean value LP . Its capacity to capture the shape of the distribution of 
member load paths in the structure is limited. Using higher order statistics, it is possible to capture the 
standard deviation, skewness, and kurtosis of the distribution of the member load paths. Figure 15 shows 
two design options based on the same ground topology. While having relatively similar load paths (LP), 
these designs have completely distinct forms as they have completely different distributions of member 
load paths (LPi).
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Appendix 2

To demonstrate the flexibility of the proposed design framework, the design task used as an example in sec-
tion “Design experiment” is proposed to three different structural designers. The only aspect that is kept 
constant in all three design sessions is the initial set of the 35,205 generated design options.

Figure 16 shows the individual outcomes for the three different design sessions within the proposed 
framework. On the left side of each row is a final self-organizing map (SOM) of 7 × 7 retrieved after regen-
eration. Through visualizing the elements contained in each selected SOM-cell, the designer could select the 
preferred ones (top right of each row) from a group of similar design options. Each designer follows an 
individual sequence of operations (bottom right of each row).

As shown in Figure 16, designers 1 and 2 carried out two design cycles, while designer 3 went through 
one more cycle before converging to the final three design options. The diversity of these nine options indi-
cates that the present framework can support personalized design sessions with highly differentiated results. 
Future research will investigate the response of the framework when more design cycles and more designers 
are involved.

Figure 15.  Two randomly generated forms based on the same ground topology with similar load paths (LP), but 
different distribution of member load paths (LPi).
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Figure 16.  SOM of 7 × 7 after regeneration (left). Three design options selected (middle and top right) and a 
diagram representing the sequence of operation (bottom, right) for each designer.


