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A B S T R A C T

The acquisition of data through remote sensing represents a significant advantage in agriculture, as it allows
researchers to perform faster and cheaper inspections over large areas. Currently, extensive researches have been
done on technical solutions that can benefit simultaneously from both: vast amounts of raw data (big data)
extracted from satellite images and Unmanned Aerial Vehicle (UAV) and novel algorithms in Machine Learning
for image processing. In this experiment, we provide an approach that fulfills the necessities of rapid food
security, assessment, planning, exploitation, and management of agricultural resources by introducing a pipeline
for the automatic localization and classification of four types of fruit trees (coconut, banana, mango, and papaya)
and the segmentation of roads in the Kingdom of Tonga, using high-resolution aerial imagery (0.04m).

We used two supervised deep convolutional neural network (CNN): the first, to localize and classify trees
(localization) and the second, to mask the streets from the aerial imagery for transportation purposes (semantic
segmentation). Additionally, we propose auxiliary methods to determine the density of groupings of each of
these trees species, based on the detection results from the localization task and render it in Density Maps that
allow comprehending the condition of the agriculture site quickly. Ultimately, we introduce a method to opti-
mize the harvesting of fruits, based on specific sceneries, such as maximum time, path length, and location of
warehouses and security points.

1. Introduction

Located in the Pacific Ocean, the Kingdom of Tonga extends over an
area of 362,000 km2. With a population of 107.122 inhabitants in 2016,
58.4% of its population depends on agriculture and forestry as a pri-
mary source of income and a key driver for economic growth. Its most
prominent agricultural products are bananas, coconuts, coffee beans,
vanilla beans, and roots such as cassava, sweet potato, and taro2

(Halavatau and Halavatau, 2001).
Most of the countries in the Pacific region are exposed to high-risk

disasters including cyclones, earthquakes, tsunami, storm surge, vol-
canic eruptions, landslides, and droughts, e.g., Tonga is affected by
more than one tropical cyclone every four years. Theses recurrent dis-
asters cause damage and losses to agriculture, food security and local
economy. In the last years, according to the 2015 Report of the
Secretary-General on the Implementation of the International Strategy

for Disaster Reduction; disasters worldwide cost around USD 1.5 trillion
in economic damage. The frequency and severity of natural disasters
are increasing, revealing an urgent need to strengthen the resilience of
food assessments and security (FAO, 2015).

To understand how local agriculture and food security were affected
by a natural disaster, aerial imagery from the site and the succeeding
mapping and classification of data are required. The field of Remote
Sensing over the past decades has robustly investigated faster methods
to collect, produce, classify, and map earth observation data. In recent
years, the use of Unmanned Aerial Vehicles (UAV) to collect data has
increased rapidly, mainly for their inexpensive hardware and rapidly
deploy for the collection of imagery. In parallel, the development of
new technics to detect objects in optical remote sensing imagery were
actively explored3 by several scholars. In 1991 an automatic tree de-
tection and delineation from digital imagery was performed by Pinz
(1991) who proposed a Vision Expert System using aerial imagery. He
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was able to locate the center of trees crown and estimate their radius
using local brightness maxima. In 1995 Gougeon (1995), launched a
rule-based algorithm, that followed the valleys of shadows between tree
crow in a ground sampled distance from digital aerial imagery. Hung
et al. (2006) proposed a vision-based shadow algorithm for tree crowns
to detect and classify imagery from UAV, using color and texture in-
formation to segment regions of interest. Hassaan et al. (2016) pre-
sented an algorithm to count trees in urban environments using image
processing techniques for vegetation segmentation and tree counting.
By applying a k-means clustering algorithm and setting threshold va-
lues to green clusters centers, the algorithm was able to segment out the
green portion out of any image without any noise.

Today, the development of machine learning approaches provides
researchers with a conceptual alternative to solve problems in the
mentioned domains without predefining the rules for a specific task.
Instead, models can learn the underlying features emerging from a large
amount of data. One of the most prominent approaches comes from the
field of image processing and computer vision named Convolutional
Neural Network (CNN). The algorithm is based on an end-to-end
learning process, from raw data to semantic labels, which is an essential
advantage in comparison with previous state-of-the-art methods
(Nogueira et al., 2017). This model outperforms all the other ap-
proaches in tasks like image classification, object recognition and lo-
calization, and pixel-wise semantic labeling. The early implementation
of CNN by LeCun et al. (1998) achieved 99.2% of accuracy in hand-
writing digits recognition and led the boost of CNN based image pro-
cessing in the following 20 years. In recent years, large online image
repositories such as ImageNet (Deng et al., 2009), and high-perfor-
mance computing platforms like GPU acceleration, have contributed
significantly to the success of using CNN in a large-scale image and
video recognition. Competitions and challenges like the ImageNet
Challenge (Russakovsky et al., 2015) and Visual Object Classes Chal-
lenge (Everingham et al., 2015) attract many researchers and as a re-
sult, state-of-art CNN models such as AlexNet (Krizhevsky et al., 2012)
and VGG-Net (Simonyan & Zisserman, 2014) respectively – both
available online.

Moreover, researchers can directly use or train these models on their
dataset with no need to design its architecture, e.g., YOLO model
(Redmon et al., 2016) achieved an excellent performance on recogni-
tion and made the real-time object localization possible. In the mean-
time, Long et al. (2015) with their novel model FCN achieved 20%
relative improvement in pixel-wise semantic segmentation in the
PASCAL VOC challenge. Also, SegNet proposed by Badrinarayanan
et al. (2015) also achieved competitive performance as it is designed to
be efficient both in terms of memory and computational time during
prediction – It is also significantly smaller in the number of trainable
parameters than other competing architectures.

The use of deep learning4 in Remote Sensing has grown ex-
ponentially since it can effectively encode spectral and spatial in-
formation based on the data itself. During the last years, considerable
efforts have been made to develop various methods for the detection of
different types of objects in satellite and aerial images with CNN, such
as road, vegetation, tree, water, buildings, cars, etc. – In the Conclusion
section we address quantitative measures to support the effectiveness of
the proposed approach compared to existing approaches: Chen et al.,
2014; Luus et al., 2015; Lu et al. 2017; Kussul et al., 2017; Mortensen

et al., 2016; Sørensen et al., 2017; Milioto et al. 2017.
In this paper, we aim to provide an approach that fulfills the ne-

cessities of rapid food security, assessment, planning, exploitation, and
management of agricultural resources; we propose a framework to ef-
ficiently localize and classify four types of tropical fruits (coconut, ba-
nana, mango, and papaya). We pursue the latter by a method to auto-
matically identify and segment roads, so that fastest and safest ways to
transport crops to adjacent warehouses or security points can be de-
tected.

To do so, we used two supervised deep CNNs; the first CNN model
performs the task of object localization, to localize and classify the type
of trees. The locations of the trees are not only used to control agri-
cultural resources, but also in scenarios of natural disasters they can be
compared with the previous state to have a better understanding on
how local agriculture and food security were affected. This information
can directly inform and accelerate subsequent relief efforts.
Additionally, we propose a method to determine the density of each of
these trees to improve productivity, based on the detection results of
the first CNN and presented as Density Maps to quickly comprehend the
condition of the agricultural site.

The second CNN model performs a semantic segmentation, that
masks the streets from the aerial imagery to help identify local trans-
portation infrastructure and, in the scenario of natural disasters, eval-
uates the damage, proposing a proper plan to distribute aid across af-
fected areas. Ultimately, we introduce a method to optimize the
harvesting process, based in specific sceneries, such as maximum time,
path length, and location of the warehouse and security points.

2. Data

2.1. Data for the first CNN: Object Localization model

For this experiment, we used UAVs high-resolution imagery over
satellite images, the latter is easily affected by cloudy environments.
Also, freely available satellite images have lower resolution than UAV
imagery. The imagery was captured in October 2017 and was made
available in early 2018 as part of an Open AI Challenge coordinated by
WeRobotics, Pacific Flying Labs, OpenAerialMap and the World Bank
UAVs for Disaster Resilience Program. We participated in this challenge
that aim to crowdsource the development of automated solutions for
the analysis of aerial imagery; with specific focus on humanitarian,
development and environmental projects.

A total of 80 km2 of high resolution (under 10 cm) aerial imagery
was obtained from the Kingdom of Tonga, covering four areas of in-
terest (with a combination of rural and urban areas). The first three
covered 10 km2 each, and the latest covered 50 km2. The spatial re-
solution of the optical imagery is 4 cm or 8 cm depending on the Area of
Interest.

We created the training data by selecting the imagery from the
50 km2 area with 8 cm of precision and further used it in the first su-
pervised CNN. We obtained labeled imagery through the Humanitarian
OpenStreetMap community, where experts label every type of tree from
this aerial imagery with these tree classes: coconut, banana, mango, and
papaya.

To prepare the training data for the first CNN model, we split the
original full-size aerial imagery into square patches with predefined
resolution (256×256×3). In order to increase the sample of training
data, we used data augmentation techniques, including random hor-
izontal and vertical flipping and random rotations having a result of
27,293 labeled images. The patches are intentionally overlapped until
half of the subdivision resolution – because some trees may have been
split and will not be recognized correctly – securing that at least one
patch can entirely cover each tree. The patches are labeled by vectors
that contain position, size and type of tree (Fig. 1); this will be further
explained in Section 3.1.

4 Deep learning is a branch of machine learning that refers to multi-layered
interconnected neural networks that can learn features and classifiers at once,
i.e., a unique network may be able to learn features and classifiers (in different
layers) and adjust the parameters, at running time, based on accuracy, giving
more importance to one layer than another depending on the problem. End-to-
end feature learning (e.g., from image pixels to semantic labels) is the sig-
nificant advantage of deep learning when compared to previous state-of-the-art
methods (Nogueira et al., 2017).

K. Saldana Ochoa and Z. Guo Computers and Electronics in Agriculture 162 (2019) 53–69

54



2.2. Data for the second CNN: Semantic segmentation model

The training data used in the second CNN is from the ISPRS com-
mission II/4 benchmark on Urban Classification and 3D Building
Reconstruction and Semantic Labeling These data correspond to the
urban area of Potsdam, Germany, and consists of high-resolution True
Ortho Photo and their respective Digital Surface Models. This data has
been classified manually into six land cover classes: impervious sur-
faces, buildings, low vegetation, trees, cars, and background (Fig. 2).
We split the imagery into square patches of 256×256×3 without
overlapping, achieving a training data of 20,102 images.

3. Procedure

3.1. Classification and location of trees

This CNN model is trained with the training data described in the
subchapter Data for the first CNN: Object Localization model. This model
is able to classify and locate different trees species. The CNN takes one
square RGB image of 256×256×3 as input and provides the corre-
sponding prediction. At the end of the prediction process, the locali-
zation results are assembled. If the distance between two or more re-
cognized trees – of the same species – is less than a predefined
threshold, the latter are considered as one, and their locations are
averaged.

The architecture of CNN is based on a modified YOLO model. As
introduced by Redmon et al., YOLO works with a prediction grid, and
each cell of the grid is responsible for recognizing one object. Objects
are predicted as one or more bounding boxes with a confidence value
and a one-hot vector that represents the type of the object; in this ex-
periment, the species of the trees. The confidence value reflects the
probability of the cell containing an object and how accurate the
bounding box is. Bounding boxes with confidence values larger than a
user-defined threshold are kept and are rendered as a result. In our case,
the prediction grid is 5× 5, where each cell predicts one bounding box
and four classes. A bounding box is represented by four values: x, y, the
radius of the object and confidence value. Since trees seen from above
are mainly circular, the width and height of the bounding box are
simplified by radius. Therefore, the output is a tensor or a three-di-
mensional matrix of 5×5×8. We set the threshold for the confidence
values to 0.8. We overlap the patches in order to avoid missing a tree
localization when several trees are found in one cell. The process of
cells activation is illustrated in Fig. 3.

The overall architecture of the model can be illustrated in Fig. 4.
The initial convolutional layers of the network extract features from the
image while the fully connected layers predict output probabilities and
coordinates. The network has 24 convolutional layers followed by two
fully connected layers (Redmon et al., 2016)

The model adopts sum-squared error as the basis of the loss func-
tion, however, as Redmon et al. mentioned, sum-square loss weights the
localization, the classification, and the confidence errors equally and
destabilize the model, which is not ideal for our task. In order to
overcome this issue, two modifications of the loss function are in-
troduced. First, an additional coefficient is multiplied to the confidence
error and second, the ground truth of confidence value (which is either
0 or 1) is used as the coefficient of the localization and the classification
errors. Therefore, the confidence value gains higher priority in training
and increases the accuracy of the model in detecting the existence of
trees. Moreover, the penalty of localization error only happens when
the ground truth tree exists. Let C and C′, B and B′ and T and T′ be the
confidence values, the bounding boxes (x, y coordinates, and size) and
the species of trees of the ground truth and the prediction respectively,
λ be the coefficient for confidence error (in our practice is set to 5) and
N be the number of grid cells (which is 25 in our case). Then the loss
function can be written as follow:
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Before training the model, we split the dataset in a 60–5–35 ratio for
training, validation, and testing respectively. The output of the first
CNN model retrieved the location and class of trees in pixel space. In
chapter 3. We will further discuss the performance and results of the
model.

3.1.1. Density and heat maps
Density maps can provide valuable insight into natural scenarios

such as agriculture because they can communicate the characteristics of
geo-data, e.g., the concentration of trees in space. In order to determine
the density of the detected trees, we map their locations back into their
geo-coordinates. We employ the Gaussian Kernel to determine the
density of each class of trees: let p be the positions of all the retrieved
trees, N be the number of all trees, the density at a given location p’ can
be calculated as:

Fig. 1. One patch is exemplifying how the training data was prepared, to be fed to the first CNN.

Fig. 2. An example of how the training data was prepared, to be fed to the second CNN.
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We rendered this results as Density Maps for each species, and later
an additional one for all species (Fig. 5). Out of 12,945 true positive
trees located, 10,136 trees where coconut trees, representing 78% of
the detected trees, 2340 bananas trees, 55 papaya trees, and 173 Mango
trees.

3.2. Street detection

The street detection utilizes the method of pixel-wise semantic
segmentation to extract the streets out of the original aerial imagery.
The semantic segmentation is a process that takes an RGB image as the
input and produces an equal-size image that is pixel-wised colored
based on semantic labels as the output. All the pixels that have the same
label are colored identically. For this task, we trained another CNN

Fig. 3. The first image shows one patch been subdivided in a grid of 5× 5, the second image exemplifies the process of the cells being activated, and the third image
shows the local coordinate of the founded trees.

Fig. 4. The architecture of the YOLO model where the disposition of the convolutional, pooling and reshape layers are explained.

Fig. 5. The original UAV imagery, and the corresponding Density map displaying the localization of all species.
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model with the ISPRS commission II/4 dataset. The subdivision process
of input imagery and treatment was described in the subchapter Data
second CNN: Semantic Segmentation model. We highlight that unlike the
tree localization and classification training data, the patches for the
street recognition have no overlap. After all, patches are processed,
outputs are assembled. From this output, we extracted only the street
layer and highlighted it on a black and white image.

The segmentation model is based on a modified SegNet model
(Badrinarayanan et al., 2015) with the input size of 256× 256×3; the
input image is processed by a set of hierarchical convolutional modules
to reduce the size and gain much more channels. Each module consists
of three to five convolutional layers with each one followed by one
batch normalization layer. At the end of each module, there are one
pooling layer and one activation layer. Then, the compressed images
are feed into a set of hierarchical up-sampling modules. Each module
starts with an up-sampling layer and followed by several convolutional
layers, and the last one is followed by an activation layer as well. The
pooling layer and the up-sampling layer in the modules of the same
hierarchy share their pooling indices. The overall architecture of the
model is illustrated in Fig. 6.

3.2.1. Path optimization
The detection results are irregular and for some streets dis-

connected; the leading causes of are: first, the original image may be
affected by the distortion caused by the merging of many UAV-images
into one, secondly, the street may be covered by tree crowns and other
objects, which makes it difficult to keep consistency; besides to the
instability of the detection model.

Instead of trying to extract precise lines that represent the street
network from the image, an alternative method is proposed. With the
hypothesis that the probability of two disconnected street segments is
one street depending on their distance in-between, we determine that
the shorter the distance, the higher the probability of belonging to the
same street. Following this assumption, a random subsampling process
is made on the resulting image, where each pixel labeled as a street has
a certain probability of being a node and taken into account in the next
stage of the process. The subsampling phase converts the street system
from image to scattered points, where their density represents the
hierarchy (importance) of the street. The scattered points are stored in a
list, and their positions inside this list are considered as their index.

A Delaunay triangulation is made on the scattered points, re-
presenting the whole street network. Its edges are weighted by the in-
versed square of their lengths, meaning shorter edges have higher
priority. Then, the shortest path between two points of the network can
be calculated by the Dijkstra algorithm5 (Dijkstra, 1959), obtaining
results that match the spatial pattern of the streets (Fig. 7).

By overlapping the density map and the street network, the nodes of

Fig. 6. The architecture of the SegNet model where the disposition of the convolutional, pooling, up-sampling, softmax and normalization layers are explained.

Fig. 7. The first image, the extract layer form the SegNet model corresponding to the street network, second images, the process from pixels to scatter points followed
by the Delaunay triangulation, and the third images the spatial pattern of the streets.

5 Dijkstra algorithm, or Dijkstra shortest path algorithm, proposed by the
computer scientist Edsger W. Dijkstra, is an algorithm that finds the shortest
path between nodes in a weighted graph. The algorithm exists many variants:
the most common one fixes a node as the source, iterates over all the other
nodes and produces a shortest path tree. The original one, however, stops early
when the target node is reached and therefore only returns the shortest path
between the source and the target nodes.
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the network can be weighted by the number of trees they reach; as seen
in Fig. 8. The overlapping between localization data and segmentation
data allows us making queries about the network. For instance, we
could ask the optimal path to harvest as many crops as possible within
10min of traveling or vice versa. The starting point, ending point,
number of trees and time of the query are user-specified, and the search
process is based on optimization algorithms. Therefore, this process
adapts to the necessities of a specific scenario.

We use the Genetic Algorithm (Fraser, 1957) for path optimization.
It searches for optimal solutions on randomly selected parent solutions
by regularly applying mutation and crossover operations and selecting

the offspring that gain higher scores on the objective function. The al-
gorithm modifies the solution in its genotype rather than the pheno-
type. More specifically, we represent each path by a series of key points
instead of all the points of it. The key points are in arbitrary sequences
and locations, and they are assumed to be visited one after the other
until the last point is reached. The in-between path between every two
key points is calculated using Dijkstra algorithm on top of the trian-
gulated graph, and the final path is the union of these results. There-
fore, the genotype of the path would be the list of key points and the
phenotype would be the result of the Dijkstra algorithm. By modifying
the sequences and the locations of the key points new paths can be

Fig. 8. Weighted nodes by the number of reachable trees within a predefined threshold of the maximal distance.
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generated from the original one. During the optimization, the mutation
of the path is done by randomly modifying the key points sequence, and
the crossover is done by taking two input paths and swapping part of
their key points. The number of key points of the path is flexible, and
therefore crossover can be applied to paths that have a different number
of key points and produces in-between offspring.

We proposed two types of search, as examples of the query process.
One is to maximize the number of crops to harvest with a limited length
of travel distance, and the other is to minimize the travel distance with
a limited number of crops to harvest. The objective functions for each
are:

n
l

/max 1, 1 d

'

And:

+n
n

lmin 1, /( 1)
d

'

where n is the number of crops, l is the length of the path, d is a constant
and l′, n′ are the two bounds respectively.

4. Results and discussion

The performance of the Tree Localization and Classification model
was measured by evaluating how precise the classifier was to localize
trees correctly. The average Euclidian distance between the center point
of the original trees and the predicted trees is 8.86406 pixels (less than
one meter). The classifier was able to count 16,457 trees, out of which
12,945 were correctly located. Considering the original 13,393 trees,
the overall Localization accuracy of the model is 80%.

We draw a confusion matrix from each type of trees (Fig. 9), in
order to evaluate the accuracy of classification of our Model, arranged
as follows: Coconut trees: type 1, Banana trees: type 2, Papaya trees:
type 3 and Mango trees: type 4. We achieve a Classification accuracy of
98%.

Having for each class:

+ =(Mean TP Mean TN)/total 0.987691

Our Misclassification Rate is 1%, based on how often the classifier
was wrong.

+ =(Mean FP Mean FN)/total 0.00990861

And its Precision is 97% according to how many times it predicts
correctly a TP.

Fig. 9. Confusion matrix for the 4 type of trees.
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Fig. 10. Area of interest on Tonga, with the classification results, from the four types of trees; green: coconut, red: banana, blue: mango, and yellow: papaya. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Density Maps of all species, followed by specific density maps of Coconut trees Banana trees, Mango trees, and Papaya trees.
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=Mean TP/predicted yes 0.97

The F1Score of the model is 0.89, according to the average of the
Localization Accuracy (80%) and the Classification Accuracy (98%).
Fig. 10 illustrates the localization results. All trees are localized with a
bounding box representing the class they belong to; green: coconut, red:
banana, blue: mango, and yellow: papaya.

The corresponding density map of the results shows that high-den-
sity areas are punctual, whereas mid-density areas appear as large
surfaces connecting high-density areas. Null-density areas are displayed
in a scattered manner between high and mid-density areas (Fig. 11). In
the coconut heat map, the same global heat map reappears. However, in
the banana, mango and papaya trees heat map, only high-density se-
parate areas appear.

Dos Santos et al. (2017) demonstrated that the estimation of trees
density is an essential first step toward large-scale monitoring. Besides
this, it provides a broad view of resource distribution that enables the
identification of areas with higher, mid and low densities. These results
can yield actions to planning, harvesting, and management of these
tropical fruits by the interests of landowners, producer associations, and
humanitarian organizations – The importance of improving these ac-
tions is essential not only to Tonga’s industry and economy but also to
the thousands of families who depend on their extraction for sub-
sistence.

The second model was able to discriminate different urban classes
(Fig. 12 middle): building footprints in blue, vegetation in green, open
spaces in red, and road network in white. By applying a filter, we could
mask the streets and see their structure. Since the training data was
from an urban scenario, and the site is rural, the accuracy of the model
to detect streets was low. For example, some parts of the buildings were
mistakenly labeled as streets. Therefore, these results required further
post-processing as described in the subchapter Path Optimization.

Resampling and graph-making processes provide a systematic ap-
proach to overcome this issue. The precise extraction of the street can
be bypassed, making it possible to use these results in applications like
pathfinding and path recommendation. The two proposed tasks for
pathfinding show that this bypassing is possible and useful. Some path
query results are illustrated in Fig. 13 and more are shown in Appendix
A.

In order to validate our approach, we applied the tree localization
model to a different dataset, one from the three areas of interest that
covered 10 Km2 with a resolution of 8 cm (explained in the chapter 2.1.

Data first CNN: Object Localization model) (Fig. 14). After successfully
obtaining the location of the trees from the imagery we conclude that
the tree recognition model can work in different scenarios, and is robust
enough to find differences in occlusion, variation, illumination and
scale among the retrieved trees.

Besides, we applied the whole pipeline of the experiment to another
area of interest in Tonga, successfully retrieving trees and streets. The
site and the results are shown in Appendix B. The processing time of
this approach is proportional to the size of the site of interest.

5. Conclusion

This paper has investigated the use of Convolutional Neural
Networks to efficiently localize and transport four types of tropical trees
using aerial imagery. This new approach reduces costs and time of in-
ventory, mapping, harvesting, and management of agricultural re-
sources, and assess the impact of disasters on food security.

We introduce a specific case where this method fulfills the neces-
sities of rapid assessment after natural disasters. Together with two
Convolutional Neural Networks models, we have also proposed a
method to determine the density of trees and a method to optimize the
harvesting process based on specific scenarios.

This experiment provides a framework where we can draw some
conclusions about the advantage and disadvantages of Convolutional
Neural Networks. The advantages of the models are: reduces the need of
featuring engeneering,6 outperforms other approaches implemented for
comparison purposes (feature extraction,7 area-based techniques sta-
tistics, texture, color, and shape-based algorithms) and, it has the fa-
culty to learn the underlying patterns of the data. The disadvantages of
the models are: takes a longer time to train than other traditional ap-
proaches, needs large datasets, lacks publicly available datasets for
researchers to work with, and in many cases, researchers need to de-
velop their own sets of images.

State of the art approaches on this field of study (agricultural objects
detection from aerial imagery) involved: different datasets, pre-

Fig. 12. First images, original aerial imagery, second image the output of SegNet model and third image the layout showing the masking of streets.

6 Hand-engineered components require considerable time, an effort that takes
place automatically.

7 Feature extraction starts from an initial set of measured data and builds
derived values (features) intended to be informative and non-redundant, fa-
cilitating the subsequent learning and generalization steps.
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Fig. 14. Aerial imagery used as a validation data.

Fig. 13. The first row shows the longest paths accessing a maximal amount of trees; the second-row shows the shortest paths with some accessible trees above a given
threshold.
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processing techniques, metrics, models, and parameters; it is difficult to
compare the current research among them (Kamilaris and Prenafeta-
Boldú, 2018); thus, our comparisons have been strictly limited to the
used of techniques and the score of each paper. In the following Table 1
a description of the task, data, labels, model, pre-processing, perfor-
mance and score is displayed.

As explained above the score of the model varies depending on the
experiment. Therefore, we compare our results with the ones that had
the same validation performance, in the case of Chen et al. they
achieved a 0.79 F1Score, and our model achieved 0.89 F1Score. Miliot
et al., Sørensen et al., Kussul et al., Luus et al. scored above 90% results
on Classification Accuracy, our model can be added to this list since it
achieved 97% in Classification accuracy. It is worth mentioning that all
the above experiments dealt only with the task of Classification.

In this experiment, we proposed a model that not only classify but
locate different class of trees; hence, we have an additional Score per-
formance: Localization Accuracy 80%, this value shows how accurate
the model was to located any class of tree. The F1Score – the average
value of classification accuracy and localization accuracy – demon-
strates that our model is suitable to perform the task of classification

and localization of 4 types of trees.

Outlooks

This approach can be used in localization, classification or trans-
portation of resources; for instance, in the assessment of damage in
buildings after a natural disaster, food supply chain, urban and regional
planning, etc. Other potential uses could be informal settlements de-
tection, and more specifically the monitoring of rooftop materials as a
means determine localized socio-economical conditions.

Data and code

The data and code of this pipeline are open source and can be ac-
cessed via this link: https://github.com/guozifeng91/south-pacific-
aerial-image.

Declarations of interest
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Appendix B

Complete framwork apllied in a Aera of interest in Tonga.
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Appendix C. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compag.2019.03.028.
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